Print all leaf nodes of an n-ary tree using DFS

Given an array edge[][2] where (edge[i][0], edge[i][1]) defines an edge in the n-ary tree, the task is to print all the leaf nodes of the given tree using.
Examples:
Input: edge[][] = {{1, 2}, {1, 3}, {2, 4}, {2, 5}, {3, 6}}
Output: 4 5 6
1
/ \
2 3
/ \ \
4 5 6
Input: edge[][] = {{1, 5}, {1, 7}, {5, 6}}
Output: 6 7
Approach: DFS can be used to traverse the complete tree. We will keep track of parent while traversing to avoid the visited node array. Initially for every node we can set a flag and if the node have at least one child (i.e. non-leaf node) then we will reset the flag. The nodes with no children are the leaf nodes.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to perform DFS on the treevoid dfs(list<int> t[], int node, int parent){ int flag = 1; // Iterating the children of current node for (auto ir : t[node]) { // There is at least a child // of the current node if (ir != parent) { flag = 0; dfs(t, ir, node); } } // Current node is connected to only // its parent i.e. it is a leaf node if (flag == 1) cout << node << " ";}// Driver codeint main(){ // Adjacency list list<int> t[1005]; // List of all edges pair<int, int> edges[] = { { 1, 2 }, { 1, 3 }, { 2, 4 }, { 3, 5 }, { 3, 6 }, { 3, 7 }, { 6, 8 } }; // Count of edges int cnt = sizeof(edges) / sizeof(edges[0]); // Number of nodes int node = cnt + 1; // Create the tree for (int i = 0; i < cnt; i++) { t[edges[i].first].push_back(edges[i].second); t[edges[i].second].push_back(edges[i].first); } // Function call dfs(t, 1, 0); return 0;} |
Java
// Java implementation of the approachimport java.util.*;class GFG{ // Pair classstatic class pair{ int first,second; pair(int a, int b) { first = a; second = b; }}// Function to perform DFS on the treestatic void dfs(Vector t, int node, int parent){ int flag = 1; // Iterating the children of current node for (int i = 0; i < ((Vector)t.get(node)).size(); i++) { int ir = (int)((Vector)t.get(node)).get(i); // There is at least a child // of the current node if (ir != parent) { flag = 0; dfs(t, ir, node); } } // Current node is connected to only // its parent i.e. it is a leaf node if (flag == 1) System.out.print( node + " ");}// Driver codepublic static void main(String args[]){ // Adjacency list Vector t = new Vector(); // List of all edges pair edges[] = { new pair( 1, 2 ), new pair( 1, 3 ), new pair( 2, 4 ), new pair( 3, 5 ), new pair( 3, 6 ), new pair( 3, 7 ), new pair( 6, 8 ) }; // Count of edges int cnt = edges.length; // Number of nodes int node = cnt + 1; for(int i = 0; i < 1005; i++) { t.add(new Vector()); } // Create the tree for (int i = 0; i < cnt; i++) { ((Vector)t.get(edges[i].first)).add(edges[i].second); ((Vector)t.get(edges[i].second)).add(edges[i].first); } // Function call dfs(t, 1, 0);}}// This code is contributed by Arnab Kundu |
Python3
# Python3 implementation of the approacht = [[] for i in range(1005)]# Function to perform DFS on the treedef dfs(node, parent): flag = 1 # Iterating the children of current node for ir in t[node]: # There is at least a child # of the current node if (ir != parent): flag = 0 dfs(ir, node) # Current node is connected to only # its parent i.e. it is a leaf node if (flag == 1): print(node, end = " ")# Driver code# List of all edgesedges = [[ 1, 2 ], [ 1, 3 ], [ 2, 4 ], [ 3, 5 ], [ 3, 6 ], [ 3, 7 ], [ 6, 8 ]]# Count of edgescnt = len(edges)# Number of nodesnode = cnt + 1# Create the treefor i in range(cnt): t[edges[i][0]].append(edges[i][1]) t[edges[i][1]].append(edges[i][0])# Function calldfs(1, 0)# This code is contributed by Mohit Kumar |
C#
// C# implementation of the approach using System.Collections;using System.Collections.Generic;using System; class GFG{ // Pair class class pair { public int first, second; public pair(int a, int b) { first = a; second = b; } } // Function to perform DFS on the tree static void dfs(ArrayList t, int node, int parent) { int flag = 1; // Iterating the children of current node for(int i = 0; i < ((ArrayList)t[node]).Count; i++) { int ir = (int)((ArrayList)t[node])[i]; // There is at least a child // of the current node if (ir != parent) { flag = 0; dfs(t, ir, node); } } // Current node is connected to only // its parent i.e. it is a leaf node if (flag == 1) Console.Write( node + " "); } // Driver code public static void Main(string []args) { // Adjacency list ArrayList t = new ArrayList(); // List of all edges pair []edges = { new pair(1, 2), new pair(1, 3), new pair(2, 4), new pair(3, 5), new pair(3, 6), new pair(3, 7), new pair(6, 8) }; // Count of edges int cnt = edges.Length; for(int i = 0; i < 1005; i++) { t.Add(new ArrayList()); } // Create the tree for(int i = 0; i < cnt; i++) { ((ArrayList)t[edges[i].first]).Add( edges[i].second); ((ArrayList)t[edges[i].second]).Add( edges[i].first); } // Function call dfs(t, 1, 0); } } // This code is contributed by rutvik_56 |
Javascript
<script>// Javascript implementation of the approach// Function to perform DFS on the treefunction dfs(t, node, parent){ let flag = 1; // Iterating the children of current node for(let i = 0; i < t[node].length; i++) { let ir = t[node][i]; // There is at least a child // of the current node if (ir != parent) { flag = 0; dfs(t, ir, node); } } // Current node is connected to only // its parent i.e. it is a leaf node if (flag == 1) document.write( node + " ");}// Driver code// Adjacency listlet t = []// List of all edgeslet edges = [ [ 1, 2 ], [ 1, 3 ], [ 2, 4 ], [ 3, 5 ], [ 3, 6 ], [ 3, 7 ], [ 6, 8 ] ];// Count of edgeslet cnt = edges.length;// Number of nodeslet node = cnt + 1; for(let i = 0; i < 1005; i++){ t.push([]);}// Create the treefor(let i = 0; i < cnt; i++){ t[edges[i][0]].push(edges[i][1]) t[edges[i][1]].push(edges[i][0])}// Function calldfs(t, 1, 0);// This code is contributed by patel2127</script> |
Output:
4 5 8 7
Time Complexity: O(N), where N is the number of nodes in the graph.
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!


