Sum of all integers in given N ranges

Given N ranges of the form [L, R], the task is to find the sum of all integers that lie in any of the given ranges.
Examples:
Input: arr[] = {{1, 5}, {3, 7}}, N = 2
Output: 28
Explanation: The set of integers that exist in one or more ranges is {1, 2, 3, 4, 5 , 6, 7}. Hence their sum is 28.Input: ranges[] = {{-12, 15}, {3, 9}, {-5, -2}, {20, 25}, {16, 20}}
Output: 247
Approach: The given problem can be solved by an approach similar to the Merge Overlapping Intervals problem. Below are the steps to follow:
- Sort the intervals based on increasing order of L.
- Push the first interval onto a stack and for each interval do the following:
- If the current interval does not overlap with the stack top, push it.
- If the current interval overlaps with stack top and right end of the current interval is more than that of stack top, update stack top with the value of right end of current interval.
- After traversing through all intervals, the remaining stack contains the merged intervals. The sum of the merged intervals can be calculated using formula for the sum of an Arithmetic Progression as the range [L, R] forms an AP with a common difference as 1 and the number of elements as R – L + 1. The sum is ((L + R)*(R-L+1))/2.
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>#define ll long longusing namespace std;// Function to find the sum of all// integers numbers in range [L, R]ll sumInRange(long L, long R){ ll Sum = ((R - L + 1) / 2) * (2 * L + (R - L)); return Sum;}// Function to find sum of all integers// that lie in any of the given rangesll calcSum(vector<pair<long, long> > data, int n){ // Sort intervals in increasing order // according to their first element sort(data.begin(), data.end()); // Merging the overlapping intervals int i, idx = 0; // Loop to iterate through the array for (i = 1; i < n; i++) { // If current interval overlaps // with the previous intervals if ((data[idx].second >= data[i].first) || (data[i].first == data[idx].second + 1)) { // Merge the previous and the // current interval data[idx].second = max(data[idx].second, data[i].second); } else { idx++; data[idx].second = data[i].second; data[idx].first = data[i].first; } } // Stores the required sum ll Sum = 0; // Loop to calculate the sum of all // the remaining merged intervals for (i = 0; i <= idx; i++) { // Add sum of integers // in current range Sum += sumInRange(data[i].first, data[i].second); } // Return the total Sum return Sum;}// Driver Codeint main(){ vector<pair<long, long> > vec = { { -12, 15 }, { 3, 9 }, { -5, -2 }, { 20, 25 }, { 16, 20 } }; cout << calcSum(vec, vec.size()); return 0;} |
Java
// Java program for the above approachimport java.util.*;class GFG{// Function to find the sum of all// integers numbers in range [L, R]static int sumInRange(int L, int R){ int Sum = ((R - L + 1) / 2) * (2 * L + (R - L)); return Sum;}// Function to find sum of all integers// that lie in any of the given rangesstatic int calcSum(int [][]data, int n){ // Sort intervals in increasing order // according to their first element Arrays.sort(data,(a,b)->{ return a[0]-b[0]; }); // Merging the overlapping intervals int i, idx = 0; // Loop to iterate through the array for (i = 1; i < n; i++) { // If current interval overlaps // with the previous intervals if ((data[idx][1] >= data[i][0]) || (data[i][0] == data[idx][1] + 1)) { // Merge the previous and the // current interval data[idx][1] = Math.max(data[idx][1], data[i][1]); } else { idx++; data[idx][1] = data[i][1]; data[idx][0] = data[i][0]; } } // Stores the required sum int Sum = 0; // Loop to calculate the sum of all // the remaining merged intervals for (i = 0; i <= idx; i++) { // Add sum of integers // in current range Sum += sumInRange(data[i][0], data[i][1]); } // Return the total Sum return Sum;}// Driver Codepublic static void main(String[] args){ int [][]vec = { { -12, 15 }, { 3, 9 }, { -5, -2 }, { 20, 25 }, { 16, 20 } }; System.out.print(calcSum(vec, vec.length));}}// This code is contributed by shikhasingrajput |
Python3
# Python 3 program for the above approach# Function to find the sum of all# integers numbers in range [L, R]def sumInRange(L, R): Sum = ((R - L + 1) // 2) * (2 * L + (R - L)) return Sum# Function to find sum of all integers# that lie in any of the given rangesdef calcSum(data, n): # Sort intervals in increasing order # according to their first element data.sort() # Merging the overlapping intervals idx = 0 # Loop to iterate through the array for i in range(1, n): # If current interval overlaps # with the previous intervals if ((data[idx][1] >= data[i][0]) or (data[i][0] == data[idx][1] + 1)): # Merge the previous and the # current interval data[idx][1] = max(data[idx][1], data[i][1]) else: idx += 1 data[idx][1] = data[i][1] data[idx][0] = data[i][0] # Stores the required sum Sum = 0 # Loop to calculate the sum of all # the remaining merged intervals for i in range(idx+1): # Add sum of integers # in current range Sum += sumInRange(data[i][0], data[i][1]) # Return the total Sum return Sum# Driver Codeif __name__ == "__main__": vec = [[-12, 15], [3, 9], [-5, -2], [20, 25], [16, 20]] print(calcSum(vec, len(vec))) # This code is contributed by ukasp. |
C#
// C# implementation of the approachusing System;using System.Collections;using System.Collections.Generic;using System.Globalization;class GFG { // Custom function for sort public static void Sort<T>(T[][] data, int col) { Comparer<T> comparer = Comparer<T>.Default; Array.Sort<T[]>(data, (x,y) => comparer.Compare(x[col],y[col])); } // Function to find the sum of all // integers numbers in range [L, R] public static int sumInRange(int L, int R) { int Sum = ((R - L + 1) / 2) * (2 * L + (R - L)); return Sum; } // Function to find sum of all integers // that lie in any of the given ranges public static int calcSum(int[][] data, int n) { // Sort intervals in increasing order // according to their first element Sort<int>(data, 0); // Merging the overlapping intervals int i = 0; int idx = 0; // Loop to iterate through the array for (i = 1; i < n; i++) { // If current interval overlaps // with the previous intervals if ((data[idx][1] >= data[i][0]) || (data[i][0] == data[idx][1] + 1)) { // Merge the previous and the // current interval data[idx][1] = Math.Max(data[idx][1], data[i][1]); } else { idx++; data[idx][1] = data[i][1]; data[idx][0] = data[i][0]; } } // Stores the required sum int Sum = 0; // Loop to calculate the sum of all // the remaining merged intervals for (i = 0; i <= idx; i++) { // Add sum of integers // in current range Sum += sumInRange(data[i][0], data[i][1]); } // Return the total Sum return Sum; } static void Main() { int[][] vec = new int[][] { new int[] {-12, 15}, new int[] {3, 9 }, new int[] {-5, -2 }, new int[] {20, 25}, new int[] {16, 20} }; Console.WriteLine(calcSum(vec, vec.Length)); }}// The code is contributed by Nidhi goel. |
Javascript
<script> // JavaScript code for the above approach // Function to find the sum of all // integers numbers in range [L, R] function sumInRange(L, R) { let Sum = ((R - L + 1) / 2) * (2 * L + (R - L)); return Sum; } // Function to find sum of all integers // that lie in any of the given ranges function calcSum(data, n) { // Sort intervals in increasing order // according to their first element data.sort(function (a, b) { return a.first - b.first }) // Merging the overlapping intervals let i, idx = 0; // Loop to iterate through the array for (i = 1; i < n; i++) { // If current interval overlaps // with the previous intervals if ((data[idx].second >= data[i].first) || (data[i].first == data[idx].second + 1)) { // Merge the previous and the // current interval data[idx].second = Math.max(data[idx].second, data[i].second); } else { idx++; data[idx].second = data[i].second; data[idx].first = data[i].first; } } // Stores the required sum let Sum = 0; // Loop to calculate the sum of all // the remaining merged intervals for (i = 0; i <= idx; i++) { // Add sum of integers // in current range Sum += sumInRange(data[i].first, data[i].second); } // Return the total Sum return Sum; } // Driver Code let vec = [{ first: -12, second: 15 }, { first: 3, second: 9 }, { first: -5, second: -2 }, { first: 20, second: 25 }, { first: 16, second: 20 }]; document.write(calcSum(vec, vec.length)); // This code is contributed by Potta Lokesh </script> |
Output
247
Time Complexity: O(N*log N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



