Program for Best Fit algorithm in Memory Management using Linked List

Best fit algorithm for memory management: The memory partition in which there is a minimum loss on the allocation of the process is the best-fit memory partition that is allocated to the process.
We have already discussed one best-fit algorithm using arrays in this article. However, here we are going to look into another approach using a linked list where the deletion of allocated nodes is also possible.
Examples:Â
Input : blockSize[] = {100, 500, 200}
processSize[] = {95, 417, 112, 426}
Output :
Block with size 426 can't be allocated
Tag Block ID Size
0 0 95
1 1 417
2 2 112
After deleting node with tag id 1.
Tag Block ID Size
0 0 95
2 2 112
3 1 426
Â
Approach: The idea is to assign a unique tag id to each memory block. Each process of different sizes are given block id, which signifies to which memory block they belong to, and unique tag id to delete particular process to free up space. Create a free list of given memory block sizes and allocated list of processes.
Create allocated list:Â
Create an allocated list of given process sizes by finding the most appropriate or best memory block to allocate memory from. If the memory block is not found, then simply print it. Otherwise, create a node and add it to the allocated linked list.
Delete process:Â
Each process is given a unique tag id. Delete the process node from the allocated linked list to free up some space for other processes. After deleting, use the block id of the deleted node to increase the memory block size in the free list.
Below is the implementation of the approach:Â
Â
C++
// C++ implementation of program// for best fit algorithm for memory// management using linked listÂ
#include <bits/stdc++.h>using namespace std;Â
// Two global countersint g = 0, k = 0;Â
// Structure for free liststruct free {Â Â Â Â int tag;Â Â Â Â int size;Â Â Â Â struct free* next;}* free_head = NULL, *prev_free = NULL;Â
// Structure for allocated liststruct alloc {Â Â Â Â int block_id;Â Â Â Â int tag;Â Â Â Â int size;Â Â Â Â struct alloc* next;}* alloc_head = NULL, *prev_alloc = NULL;Â
// Function to create free// list with given sizesvoid create_free(int c){    struct free* p = (struct free*)        malloc(sizeof(struct free));    p->size = c;    p->tag = g;    p->next = NULL;    if (free_head == NULL)        free_head = p;    else        prev_free->next = p;    prev_free = p;    g++;}Â
// Function to print free list which// prints free blocks of given sizesvoid print_free(){Â Â Â Â struct free* p = free_head;Â Â Â Â cout << "Tag\tSize\n";Â Â Â Â while (p != NULL) {Â Â Â Â Â Â Â Â cout << p->tag << "\t"Â Â Â Â Â Â Â Â Â Â Â Â Â << p->size << "\n";Â Â Â Â Â Â Â Â p = p->next;Â Â Â Â }}Â
// Function to print allocated list which// prints allocated blocks and their block idsvoid print_alloc(){    struct alloc* p = alloc_head;    cout << "Tag\tBlock ID\tSize\n";    while (p != NULL) {        cout << p->tag << "\t " << p->block_id             << "\t\t" << p->size << "\n";        p = p->next;    }}Â
// Function to allocate memory to// blocks as per Best fit algorithmvoid create_alloc(int c){    // create node for process of given size    struct alloc* q = (struct alloc*)        malloc(sizeof(struct alloc));    q->size = c;    q->tag = k;    q->next = NULL;    struct free* p = free_head;Â
    // Temporary node r of free    // type to find the best and    // most suitable free node to    // allocate space    struct free* r = (struct free*)        malloc(sizeof(struct free));    r->size = 99999;Â
    // Loop to find best choice    while (p != NULL) {        if (q->size <= p->size) {            if (p->size < r->size)                r = p;        }        p = p->next;    }Â
    // Node found to allocate    // space from    if (r->size != 99999) {        // Adding node to allocated list        q->block_id = r->tag;        r->size -= q->size;        if (alloc_head == NULL)            alloc_head = q;        else {            prev_alloc = alloc_head;            while (prev_alloc->next != NULL)                prev_alloc = prev_alloc->next;            prev_alloc->next = q;        }        k++;    }Â
    // Node with size not found    else        cout << "Block with size "             << c << " can't be allocated\n";}Â
// Function to delete node from// allocated list to free some spacevoid delete_alloc(int t){    // Standard delete function    // of a linked list node    struct alloc *p = alloc_head, *q = NULL;Â
    // First, find the node according    while (p != NULL)    // to given tag id    {        if (p->tag == t)            break;        q = p;        p = p->next;    }    if (p == NULL)        cout << "Tag ID doesn't exist\n";    else if (p == alloc_head)        alloc_head = alloc_head->next;    else        q->next = p->next;    struct free* temp = free_head;    while (temp != NULL) {        if (temp->tag == p->block_id) {            temp->size += p->size;            break;        }        temp = temp->next;    }}Â
// Driver Codeint main(){Â Â Â Â int blockSize[] = { 100, 500, 200 };Â Â Â Â int processSize[] = { 95, 417, 112, 426 };Â Â Â Â int m = sizeof(blockSize)Â Â Â Â Â Â Â Â Â Â Â Â / sizeof(blockSize[0]);Â Â Â Â int n = sizeof(processSize)Â Â Â Â Â Â Â Â Â Â Â Â / sizeof(processSize[0]);Â
    for (int i = 0; i < m; i++)        create_free(blockSize[i]);Â
    for (int i = 0; i < n; i++)        create_alloc(processSize[i]);Â
    print_alloc();Â
    // block of tag id 1 deleted    // to free space for block of size 426    delete_alloc(1);Â
    create_alloc(426);    cout << "After deleting block"         << " with tag id 1.\n";    print_alloc();} |
Python3
# Python3 implementation of the First# sit memory management algorithm# using linked listÂ
# Two global countersg = 0; k = 0Â
# Structure for free listclass free:Â Â Â Â def __init__(self):Â Â Â Â Â Â Â Â self.tag=-1Â Â Â Â Â Â Â Â self.size=0Â Â Â Â Â Â Â Â self.next=Nonefree_head = None; prev_free = NoneÂ
# Structure for allocated listclass alloc:Â Â Â Â def __init__(self):Â Â Â Â Â Â Â Â self.block_id=-1Â Â Â Â Â Â Â Â self.tag=-1Â Â Â Â Â Â Â Â self.size=0Â Â Â Â Â Â Â Â self.next=NoneÂ
alloc_head = None;prev_alloc = NoneÂ
# Function to create free# list with given sizesdef create_free(c):    global g,prev_free,free_head    p = free()    p.size = c    p.tag = g    p.next = None    if free_head is None:        free_head = p    else:        prev_free.next = p    prev_free = p    g+=1Â
Â
# Function to print free list which# prints free blocks of given sizesdef print_free():    p = free_head    print("Tag\tSize")    while (p != None) :        print("{}\t{}".format(p.tag,p.size))        p = p.next     Â
Â
# Function to print allocated list which# prints allocated blocks and their block idsdef print_alloc():    p = alloc_head    print("Tag\tBlock ID\tSize")    while (p is not None) :        print("{}\t{}\t{}\t".format(p.tag,p.block_id,p.size))        p = p.next     Â
Â
# Function to allocate memory to# blocks as per First fit algorithmdef create_alloc(c):    global k,alloc_head    # create node for process of given size    q = alloc()    q.size = c    q.tag = k    q.next = None    p = free_headÂ
    # Iterate to find first memory    # block with appropriate size    while (p != None) :        if (q.size <= p.size):            break        p = p.next     Â
    # Node found to allocate    if (p != None) :        # Adding node to allocated list        q.block_id = p.tag        p.size -= q.size        if (alloc_head == None):            alloc_head = q        else :            prev_alloc = alloc_head            while (prev_alloc.next != None):                prev_alloc = prev_alloc.next            prev_alloc.next = q                 k+=1         else: # Node found to allocate space from        print("Block of size {} can't be allocated".format(c))Â
# Function to delete node from# allocated list to free some spacedef delete_alloc(t):    global alloc_head    # Standard delete function    # of a linked list node    p = alloc_head; q = NoneÂ
    # First, find the node according    # to given tag id    while (p != None) :        if (p.tag == t):            break        q = p        p = p.next         if (p == None):        print("Tag ID doesn't exist")    elif (p == alloc_head):        alloc_head = alloc_head.next    else:        q.next = p.next    temp = free_head    while (temp != None) :        if (temp.tag == p.block_id) :            temp.size += p.size            break                 temp = temp.next     Â
Â
# Driver Codeif __name__ == '__main__':Â Â Â Â blockSize = [100, 500, 200] Â Â Â Â processSize = [417, 112, 426, 95]Â Â Â Â m = len(blockSize)Â Â Â Â n = len(processSize)Â
    for i in range(m):        create_free(blockSize[i])Â
    for i in range(n):        create_alloc(processSize[i])Â
    print_alloc()Â
    # Block of tag id 0 deleted    # to free space for block of size 426    delete_alloc(0)Â
    create_alloc(426)    print("After deleting block with tag id 0.")    print_alloc() |
Java
// Java implementation of program// for best fit algorithm for memory// management using linked listÂ
import java.util.*;Â
// Class for free listclass Free {Â Â Â Â int tag;Â Â Â Â int size;Â Â Â Â Free next;Â
    public Free(int tag, int size)    {        this.tag = tag;        this.size = size;        next = null;    }}Â
// Class for allocated listclass Alloc {Â Â Â Â int block_id;Â Â Â Â int tag;Â Â Â Â int size;Â Â Â Â Alloc next;Â
    public Alloc(int tag, int size)    {        this.tag = tag;        this.size = size;        next = null;    }}Â
public class MemoryManagement {Â
    // Two global counters    static int g = 0, k = 0;Â
    // Head of free list    static Free free_head = null;    static Free prev_free = null;Â
    // Head of allocated list    static Alloc alloc_head = null;    static Alloc prev_alloc = null;Â
    // Function to create free    // list with given sizes    public static void create_free(int c)    {        Free p = new Free(g, c);        if (free_head == null)            free_head = p;        else            prev_free.next = p;        prev_free = p;        g++;    }Â
    // Function to print free list which    // prints free blocks of given sizes    public static void print_free()    {        Free p = free_head;        System.out.println("Tag\tSize");        while (p != null) {            System.out.println(p.tag + "\t" + p.size);            p = p.next;        }    }Â
    // Function to print allocated list which    // prints allocated blocks and their block ids    public static void print_alloc()    {        Alloc p = alloc_head;        System.out.println("Tag\tBlock ID\tSize");        while (p != null) {            System.out.println(p.tag + "\t " + p.block_id                    + "\t\t" + p.size);            p = p.next;        }    }Â
    // Function to allocate memory to    // blocks as per Best fit algorithm    public static void create_alloc(int c)    {        // create node for process of given size        Alloc q = new Alloc(k, c);Â
        Free p = free_head;Â
        // Temporary node r of free        // type to find the best and        // most suitable free node to        // allocate space        Free r = new Free(0, 99999);Â
        // Loop to find best choice        while (p != null) {            if (q.size <= p.size) {                if (p.size < r.size)                    r = p;            }            p = p.next;        }Â
        // Node found to allocate        // space from        if (r.size != 99999) {            // Adding node to allocated list            q.block_id = r.tag;            r.size -= q.size;            if (alloc_head == null)                alloc_head = q;            else {                prev_alloc = alloc_head;                while (prev_alloc.next != null)                    prev_alloc = prev_alloc.next;                prev_alloc.next = q;            }            k++;        }Â
        // Node with size not found        else            System.out.println("Block with size "                    + c + " can't be allocated\n");    }Â
    // Function to delete node from    // allocated list to free some space    public static void delete_alloc(int t)    {        // Standard delete function        // of a linked list node        Alloc p = alloc_head, q = null;Â
        // First, find the node according        while (p != null)        // to given tag id        {            if (p.tag == t)                break;            q = p;            p = p.next;        }        if (p == null)            System.out.println("Tag ID doesn't exist\n");        else if (p == alloc_head)            alloc_head = alloc_head.next;        else            q.next = p.next;        Free temp = free_head;        while (temp != null) {            if (temp.tag == p.block_id) {                temp.size += p.size;                break;            }            temp = temp.next;        }    }Â
    // Driver Code    public static void main(String[] args)    {        int[] blockSize = new int[] { 100, 500, 200 };        int[] processSize = new int[] { 95, 417, 112, 426 };        int m = blockSize.length;        int n = processSize.length;Â
        for (int i = 0; i < m; i++)            create_free(blockSize[i]);Â
        for (int i = 0; i < n; i++)            create_alloc(processSize[i]);Â
        print_alloc();Â
        // block of tag id 1 deleted        // to free space for block of size 426        delete_alloc(1);Â
        create_alloc(426);        System.out.println("After deleting block"                + " with tag id 1.");        print_alloc();    }} |
C#
// C# implementation of program// for best fit algorithm for memory// management using linked listÂ
using System;Â
// Class for free listclass Free{Â Â Â Â public int tag;Â Â Â Â public int size;Â Â Â Â public Free next;Â
    public Free(int tag, int size)    {        this.tag = tag;        this.size = size;        next = null;    }}Â
// Class for allocated listclass Alloc{Â Â Â Â public int block_id;Â Â Â Â public int tag;Â Â Â Â public int size;Â Â Â Â public Alloc next;Â
    public Alloc(int tag, int size)    {        this.tag = tag;        this.size = size;        next = null;    }}Â
public class MemoryManagement{    // Two global counters    static int g = 0, k = 0;Â
    // Head of free list    static Free free_head = null;    static Free prev_free = null;Â
    // Head of allocated list    static Alloc alloc_head = null;    static Alloc prev_alloc = null;Â
    // Function to create free    // list with given sizes    public static void create_free(int c)    {        Free p = new Free(g, c);        if (free_head == null)            free_head = p;        else            prev_free.next = p;        prev_free = p;        g++;    }Â
    // Function to print free list which    // prints free blocks of given sizes    public static void print_free()    {        Free p = free_head;        Console.WriteLine("Tag\tSize");        while (p != null)        {            Console.WriteLine(p.tag + "\t" + p.size);            p = p.next;        }    }Â
    // Function to print allocated list which    // prints allocated blocks and their block ids    public static void print_alloc()    {        Alloc p = alloc_head;        Console.WriteLine("Tag\tBlock ID\tSize");        while (p != null)        {            Console.WriteLine(p.tag + "\t " + p.block_id                    + "\t\t" + p.size);            p = p.next;        }    }Â
    // Function to allocate memory to    // blocks as per Best fit algorithm    public static void create_alloc(int c)    {        // create node for process of given size        Alloc q = new Alloc(k, c);Â
        Free p = free_head;Â
        // Temporary node r of free        // type to find the best and        // most suitable free node to        // allocate space        Free r = new Free(0, 99999);Â
        // Loop to find best choice        while (p != null)        {            if (q.size <= p.size)            {                if (p.size < r.size)                    r = p;            }            p = p.next;        }Â
        // Node found to allocate        // space from        if (r.size != 99999)        {            // Adding node to allocated list            q.block_id = r.tag;            r.size -= q.size;            if (alloc_head == null)                alloc_head = q;            else            {                prev_alloc = alloc_head;                while (prev_alloc.next != null)                    prev_alloc = prev_alloc.next;                prev_alloc.next = q;            }            k++;        }Â
        // Node with size not found        else            Console.WriteLine("Block with size "                    + c + " can't be allocated\n");    }Â
    // Function to delete node from    // allocated list to free some space    public static void delete_alloc(int t)    {        // Standard delete function        // of a linked list node        Alloc p = alloc_head, q = null;Â
        // First, find the node according        while (p != null)        // to given tag id        {            if (p.tag == t)                break;            q = p;            p = p.next;        }        if (p == null)            Console.WriteLine("Tag ID doesn't exist\n");        else if (p == alloc_head)            alloc_head = alloc_head.next;        else            q.next = p.next;        Free temp = free_head;        while (temp != null)        {            if (temp.tag == p.block_id)            {                temp.size += p.size;                break;            }            temp = temp.next;        }    }Â
    // Driver Code    public static void Main(string[] args)    {        int[] blockSize = new int[] { 100, 500, 200 };        int[] processSize = new int[] { 95, 417, 112, 426 };        int m = blockSize.Length;        int n = processSize.Length;Â
        for (int i = 0; i < m; i++)            create_free(blockSize[i]);Â
        for (int i = 0; i < n; i++)            create_alloc(processSize[i]);Â
        print_alloc();Â
        // block of tag id 1 deleted        // to free space for block of size 426        delete_alloc(1);Â
        create_alloc(426);        Console.WriteLine("After deleting block"                + " with tag id 1.");        print_alloc();    }} |
Javascript
// Javascript implementation of program// for best fit algorithm for memory// management using linked listÂ
// Two global counterslet g = 0, k = 0;Â
// Structure for free listclass Free {Â Â Â Â constructor(tag, size, next) {Â Â Â Â Â Â Â Â this.tag = tag;Â Â Â Â Â Â Â Â this.size = size;Â Â Â Â Â Â Â Â this.next = next;Â Â Â Â }}Â
let freeHead = null, prevFree = null;Â
// Structure for allocated listclass Alloc {Â Â Â Â constructor(blockId, tag, size, next) {Â Â Â Â Â Â Â Â this.blockId = blockId;Â Â Â Â Â Â Â Â this.tag = tag;Â Â Â Â Â Â Â Â this.size = size;Â Â Â Â Â Â Â Â this.next = next;Â Â Â Â }}Â
let allocHead = null, prevAlloc = null;Â
// Function to create free// list with given sizesfunction createFree(c) {Â Â Â Â let p = new Free(g, c, null);Â Â Â Â if (freeHead == null) {Â Â Â Â Â Â Â Â freeHead = p;Â Â Â Â } else {Â Â Â Â Â Â Â Â prevFree.next = p;Â Â Â Â }Â Â Â Â prevFree = p;Â Â Â Â g++;}Â
// Function to print free list which// prints free blocks of given sizesfunction printFree() {Â Â Â Â let p = freeHead;Â Â Â Â console.log("Tag\tSize");Â Â Â Â while (p != null) {Â Â Â Â Â Â Â Â console.log(p.tag + "\t" + p.size);Â Â Â Â Â Â Â Â p = p.next;Â Â Â Â }}Â
// Function to print allocated list which// prints allocated blocks and their block idsfunction printAlloc() {    let p = allocHead;    console.log("Tag\tBlock ID\tSize");    while (p != null) {        console.log(p.tag + "\t " + p.blockId + "\t\t" + p.size);        p = p.next;    }}Â
Â
// Function to allocate memory to// blocks as per Best fit algorithmfunction createAlloc(c) {Â
    // create node for process of given size    let q = new Alloc(null, k, c, null);    let p = freeHead;         // Temporary node r of free    // type to find the best and    // most suitable free node to    // allocate space    let r = new Free(null, 0, null);    r.size = 99999;         // Loop to find best choice    while (p != null) {        if (q.size <= p.size) {            if (p.size < r.size) {                r = p;            }        }        p = p.next;    }              // Node found to allocate    // space from    if (r.size != 99999) {        // Adding node to allocated list        q.blockId = r.tag;        r.size -= q.size;        if (allocHead == null) {            allocHead = q;        } else {            prevAlloc = allocHead;            while (prevAlloc.next != null) {                prevAlloc = prevAlloc.next;            }            prevAlloc.next = q;        }        k++;    }Â
    // Node with size not found    else {        console.log("Block with size " + c + " can't be allocated");    }}Â
// Function to delete node from// allocated list to free some spacefunction deleteAlloc(t) {Â
    // Standard delete function    // of a linked list node    let p = allocHead, q = null;         // First, find the node according    while (p != null) {        // to given tag id        if (p.tag == t) {            break;        }        q = p;        p = p.next;    }    if (p == null) {        console.log("Tag ID doesn't exist");    } else if (p == allocHead) {        allocHead = allocHead.next;    } else {        q.next = p.next;    }    let temp = freeHead;    while (temp != null) {        if (temp.tag == p.blockId) {            temp.size += p.size;            break;        }        temp = temp.next;    }}Â
// Driver Codefunction main() {Â Â const blockSize = [100, 500, 200];Â Â const processSize = [95, 417, 112, 426];Â Â const m = blockSize.length;Â Â const n = processSize.length;Â
  for (let i = 0; i < m; i++) {    createFree(blockSize[i]);  }Â
  for (let i = 0; i < n; i++) {    createAlloc(processSize[i]);  }Â
  printAlloc();     // block of tag id 1 deleted  // to free space for block of size 426  deleteAlloc(1);Â
  createAlloc(426);  console.log("After deleting block with tag id 1.");  printAlloc();}Â
// this code is contributed by bhardwajji |
Block with size 426 can't be allocated Tag Block ID Size 0 0 95 1 1 417 2 2 112 After deleting block with tag id 1. Tag Block ID Size 0 0 95 2 2 112 3 1 426
Â
The time complexity of this program is O(m+n) as we traverse the blockSize and processSize array of sizes and create both free and allocated list.Â
The space complexity is O(m+n) as we create m+n nodes for free and allocated list respectively.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




