Check if a number can be expressed as power | Set 2 (Using Log)

Check if a number can be expressed as x^y (x raised to power y) 
Given a positive integer n, find if it can be expressed as x^y where y > 1 and x > 0. x and y both are integers.
Examples : 
 

Input:  n = 8
Output: true
8 can be expressed as 2^3

Input:  n = 49
Output: true
49 can be expressed as 7^2

Input:  n = 48
Output: false
48 can't be expressed as x^y

 

We have discussed two different approaches in below post.
Check if a number can be expressed as x^y (x raised to power y).
The idea is find Log n in different bases from 2 to square root of n. If Log n for a base becomes integer then result is true, else result is false. 
 

C++




// CPP program to find if a number
// can be expressed as x raised to
// power y.
#include <bits/stdc++.h>
using namespace std;
 
bool isPower(unsigned int n)
{
    // Find Log n in different bases
    // and check if the value is an
    // integer
    for (int x=2; x<=sqrt(n); x++) {
        float f = log(n) / log(x);
        if ((f - (int)f) == 0.0)
            return true;       
    }
    return false;
}
 
// Driver code
int main()
{
    for (int i = 2; i < 100; i++)
        if (isPower(i))
            cout << i << "  ";
    return 0;
}


Java




// Java program to find if a number
// can be expressed as x raised to
// power y.
class GFG {
     
    static boolean isPower(int n)
    {
        // Find Log n in different
        // bases and check if the
        // value is an integer
        for (int x = 2; x <=
               (int)Math.sqrt(n); x++)
        {
            float f = (float)Math.log(n) /
                      (float) Math.log(x);
                       
            if ((f - (int)f) == 0.0)
                return true;    
        }
        return false;
    }
     
    // Driver code
    public static void main(String args[])
    {
        for (int i = 2; i < 100; i++)
            if (isPower(i))
                System.out.print( i + " ");
    }
}
 
// This code is contributed by Sam007


Python3




# Python3 program to find if a number
# can be expressed as x raised to
# power y.
import math
 
def isPower(n):
 
    # Find Log n in different
    # bases and check if the
    # value is an integer
    for x in range(2,int(math.sqrt(n)) + 1):
     
        f = math.log(n) / math.log(x);
        if ((f - int(f)) == 0.0):
            return True;    
     
    return False;
 
# Driver code
for i in range(2, 100):
    if (isPower(i)):
        print(i, end = " ");
 
# This code is contributed by mits


C#




// C# program to find if a number
// can be expressed as x raised to
// power y.
using System;
 
class GFG
{
    static bool isPower(int n)
    {
        // Find Log n in different
        // bases and check if the
        // value is an integer
        for (int x = 2;
                 x <= (int)Math.Sqrt(n); x++)
        {
            float f = (float)Math.Log(n) /
                      (float) Math.Log(x);
            if ((f - (int)f) == 0.0)
                return true;    
        }
        return false;
    }
    // Driver Code
    public static void Main()
    {
        for (int i = 2; i < 100; i++)
            if (isPower(i))
                Console.Write( i + " ");
    }
}
 
// This code is contributed by Sam007


PHP




<?php
// PHP program to find if a number
// can be expressed as x raised to
// power y.
 
function isPower($n)
{
    // Find Log n in different
    // bases and check if the
    // value is an integer
    for ($x = 2; $x <= sqrt($n); $x++)
    {
        $f = log($n) / log($x);
        if (($f - (int)$f) == 0.0)
            return true;    
    }
    return false;
}
 
// Driver code
for ($i = 2; $i < 100; $i++)
    if (isPower((int)$i))
        echo $i." ";
 
// This code is contributed by Sam007
?>


Javascript




<script>
 
// javascript program to find if a number
// can be expressed as x raised to
// power y.
function isPower(n) {
        // Find Log n in different
        // bases and check if the
        // value is an integer
        for (x = 2; x <= parseInt( Math.sqrt(n)); x++)
        {
            var f =  Math.log(n) /  Math.log(x);
 
            if ((f - parseInt( f)) == 0.0)
                return true;
        }
        return false;
    }
 
    // Driver code
     
        for (i = 2; i < 100; i++)
            if (isPower(i))
                document.write(i + " ");
 
// This code contributed by Rajput-Ji
 
</script>


Output: 

4  8  9  16  25  27  32  36  49  64  81

 

Time Complexity : O(sqrt(N))

Auxiliary Space : O(1) ,as we are not using any extra space

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button