Area of decagon inscribed within the circle

Given here is a regular decagon, inscribed within a circle of radius r, the task is to find the area of the decagon.
Examples:
Input: r = 5
Output: 160.144
Input: r = 8
Output: 409.969
Approach:
We know, side of the decagon within the circle, a = r√(2-2cos36)(Refer here)
So, area of the decagon,
A = 5*a^2*(√5+2√5)/2 = 5 *(r√(2-2cos36))^2*(√5+2√5)/2=(5*r^2*(3-√5)*(√5+2√5))/4
Below is the implementation of the above approach:
C++
// C++ Program to find the area of the decagon// inscribed within a circle#include <bits/stdc++.h>using namespace std;// Function to find the area of the decagonfloat area(float r){ // radius cannot be negative if (r < 0) return -1; // area of the decagon float area = (5 * pow(r, 2) * (3 - sqrt(5)) * (sqrt(5) + (2 * sqrt(5)))) / 4; return area;}// Driver codeint main(){ float r = 8; cout << area(r) << endl; return 0;} |
Java
// Java Program to find the area of the decagon // inscribed within a circle import java.io.*;class GFG { // Function to find the area of the decagon static double area(double r) { // radius cannot be negative if (r < 0) return -1; // area of the decagon double area = (5 * Math.pow(r, 2) * (3 - Math.sqrt(5)) * (Math.sqrt(5) + ((2 * Math.sqrt(5))))/ 4); return area; } // Driver code public static void main (String[] args) { double r = 8; System.out.println (area(r)); }//This code is contributed by ajit} |
Python3
# Python3 Program to find the area of# the decagon inscribed within a circlefrom math import sqrt,pow# Function to find the # area of the decagondef area(r): # radius cannot be negative if r < 0: return -1 # area of the decagon area = (5 * pow(r, 2) * (3 - sqrt(5)) * (sqrt(5) + (2 * sqrt(5))))/ 4 return area# Driver codeif __name__ == '__main__': r = 8 print(area(r))# This code is contributed# by Surendra_Gangwar |
C#
// C# Program to find the area of the // decagon inscribed within a circle using System;class GFG{ // Function to find the area // of the decagon static double area(double r) { // radius cannot be negative if (r < 0) return -1; // area of the decagon double area = (5 * Math.Pow(r, 2) * (3 - Math.Sqrt(5)) * (Math.Sqrt(5) + ((2 * Math.Sqrt(5))))/ 4); return area; } // Driver code static public void Main (){ double r = 8; Console.WriteLine (area(r)); }}// This code is contributed by akt_mit |
Javascript
<script>// javascript Program to find the area of the decagon // inscribed within a circle // Function to find the area of the decagon function area( r) { // radius cannot be negative if (r < 0) return -1; // area of the decagon var area = (5 * Math.pow(r, 2) * (3 - Math.sqrt(5)) * (Math.sqrt(5) + ((2 * Math.sqrt(5))))/ 4); return area; } // Driver code var r = 8; document.write(area(r).toFixed(3)); // This code is contributed by 29AjayKumar </script> |
PHP
<?php// PHP Program to find the area // of the decagon inscribed within// a circle// Function to find the area// of the decagonfunction area($r){ // radius cannot be negative if ($r < 0) return -1; // area of the decagon $area = (5 * pow($r, 2) * (3 - sqrt(5)) * (sqrt(5) + (2 * sqrt(5)))) / 4; return $area;}// Driver code$r = 8;echo area($r) . "\n";// This code is contributed// by Akanksha Rai(Abby_akku)?> |
Output
409.969
Time complexity: O(1)
Auxiliary Space: O(1), since no extra space has been taken.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




