Count elements such that there are exactly X elements with values greater than or equal to X

Given an array arr of N integers, the task is to find the number of elements that satisfy the following condition:
If the element is X then there has to be exactly X number of elements in the array (excluding the number X) which are greater than or equal to X
Examples:
Input: arr[] = {1, 2, 3, 4}
Output: 1
Only element 2 satisfies the condition as
there are exactly 2 elements which are greater
than or equal to 2 (3, 4) except 2 itself.
Input: arr[] = {5, 5, 5, 5, 5}
Output: 0
Approach: The problem involves efficient searching for each arr[i] element the number of arr[j]’s (i != j) which are greater than or equal to arr[i].
- Sort the array in ascending order.
- For every element arr[i], using binary search get the count of all the elements that are greater than or equal to arr[i] except arr[i] itself.
- If the count is equal to arr[i] then increment the result.
- Print the value of the result in the end.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;#define ll long longll int getCount(vector<ll int> v, int n){ // Sorting the vector sort((v).begin(), (v).end()); ll int cnt = 0; for (ll int i = 0; i < n; i++) { // Count of numbers which // are greater than v[i] ll int tmp = v.end() - 1 - upper_bound((v).begin(), (v).end(), v[i] - 1); if (tmp == v[i]) cnt++; } return cnt;}// Driver codeint main(){ ll int n; n = 4; vector<ll int> v; v.push_back(1); v.push_back(2); v.push_back(3); v.push_back(4); cout << getCount(v, n); return 0;} |
Java
// Java implementation of the approachimport java.util.*;class GFG { static int getCount(int[] v, int n) { // Sorting the vector Arrays.sort(v); int cnt = 0; for (int i = 0; i < n; i++) { // Count of numbers which // are greater than v[i] int tmp = n - 1 - upperBound(v, n, v[i] - 1); if (tmp == v[i]) cnt++; } return cnt; } // Function to implement upper_bound() static int upperBound(int[] array, int length, int value) { int low = 0; int high = length; while (low < high) { final int mid = (low + high) / 2; if (value >= array[mid]) { low = mid + 1; } else { high = mid; } } return low; } // Driver Code public static void main(String[] args) { int n = 4; int[] v = { 1, 2, 3, 4 }; System.out.println(getCount(v, n)); }}// This code is contributed by// sanjeev2552 |
Python3
# Python3 implementation of the approachfrom bisect import bisect as upper_bounddef getCount(v, n): # Sorting the vector v = sorted(v) cnt = 0 for i in range(n): # Count of numbers which # are greater than v[i] tmp = n - 1 - upper_bound(v, v[i] - 1) if (tmp == v[i]): cnt += 1 return cnt# Driver codemain()n = 4v = []v.append(1)v.append(2)v.append(3)v.append(4)print(getCount(v, n))# This code is contributed by Mohit Kumar |
C#
// C# implementation of the approachusing System;class GFG { static int getCount(int[] v, int n) { // Sorting the vector Array.Sort(v); int cnt = 0; for (int i = 0; i < n; i++) { // Count of numbers which // are greater than v[i] int tmp = n - 1 - upperBound(v, n, v[i] - 1); if (tmp == v[i]) cnt++; } return cnt; } // Function to implement upper_bound() static int upperBound(int[] array, int length, int value) { int low = 0; int high = length; while (low < high) { int mid = (low + high) / 2; if (value >= array[mid]) { low = mid + 1; } else { high = mid; } } return low; } // Driver Code public static void Main(String[] args) { int n = 4; int[] v = { 1, 2, 3, 4 }; Console.WriteLine(getCount(v, n)); }}// This code is contributed by PrinciRaj1992 |
Javascript
<script>// JavaScript implementation of the approach function getCount(v,n) { // Sorting the vector v.sort(function(a,b){return a-b;}); let cnt = 0; for (let i = 0; i < n; i++) { // Count of numbers which // are greater than v[i] let tmp = n - 1 - upperBound(v, n, v[i] - 1); if (tmp == v[i]) cnt++; } return cnt; } // Function to implement upper_bound() function upperBound(array,length,value) { let low = 0; let high = length; while (low < high) { let mid = Math.floor((low + high) / 2); if (value >= array[mid]) { low = mid + 1; } else { high = mid; } } return low; } // Driver Code let n = 4; let v=[1, 2, 3, 4]; document.write(getCount(v, n));// This code is contributed by unknown2108</script> |
Output
1
Complexity Analysis:
- Time Complexity: O(N*logN)
- Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



