Count of Right-Angled Triangle formed from given N points whose base or perpendicular are parallel to X or Y axis

Given an array arr[] of N distinct integers points on the 2D Plane. The task is to count the number of Right-Angled Triangle from N points such that the base or perpendicular is parallel to the X or Y-axis.
Examples:
Input: arr[][] = {{4, 2}, {2, 1}, {1, 3}}
Output: 0
Explanation:In the above image there is no right-angled triangle formed.
Input: arr[][] = {{1, 2}, {2, 1}, {2, 2}, {2, 3}, {3, 2}}
Output: 4
Explanation:In the above image there are 4 right-angled triangles formed by triangles ACB, ACD, DCE, BCE.
Approach: The idea is to store the count of each co-ordinate’s having the same X and Y co-ordinates respectively. Now traverse each given points and the count of a right-angled triangle formed by each coordinate (X, Y) is given by:
Count of right-angled triangles = (frequencies of X coordinates – 1) * (frequencies of Y coordinates – 1)
Below are the steps:
- Create two maps to store the count of points, one for having the same X-coordinate and another for having the same Y-coordinate.
- For each value in the map of x-coordinate and in the map of y-coordinate choose that pair of points as pivot elements and find the frequency of that pivot element.
- For each pivot element(say pivot) in the above step, the count of right-angled is given by:
(m1[pivot].second-1)*(m2[pivot].second-1)
- Similarly, calculate the total possible right-angled triangle for other N points given.
- Finally, sum all the possible triangle obtained that is the final answer.
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>using namespace std;// Function to find the number of right// angled triangle that are formed from// given N points whose perpendicular or// base is parallel to X or Y axisint RightAngled(int a[][2], int n){ // To store the number of points // has same x or y coordinates unordered_map<int, int> xpoints; unordered_map<int, int> ypoints; for (int i = 0; i < n; i++) { xpoints[a[i][0]]++; ypoints[a[i][1]]++; } // Store the total count of triangle int count = 0; // Iterate to check for total number // of possible triangle for (int i = 0; i < n; i++) { if (xpoints[a[i][0]] >= 1 && ypoints[a[i][1]] >= 1) { // Add the count of triangles // formed count += (xpoints[a[i][0]] - 1) * (ypoints[a[i][1]] - 1); } } // Total possible triangle return count;}// Driver Codeint main(){ int N = 5; // Given N points int arr[][2] = { { 1, 2 }, { 2, 1 }, { 2, 2 }, { 2, 3 }, { 3, 2 } }; // Function Call cout << RightAngled(arr, N); return 0;} |
Python3
# Python3 program for the above approach from collections import defaultdict# Function to find the number of right # angled triangle that are formed from # given N points whose perpendicular or # base is parallel to X or Y axis def RightAngled(a, n): # To store the number of points # has same x or y coordinates xpoints = defaultdict(lambda:0) ypoints = defaultdict(lambda:0) for i in range(n): xpoints[a[i][0]] += 1 ypoints[a[i][1]] += 1 # Store the total count of triangle count = 0 # Iterate to check for total number # of possible triangle for i in range(n): if (xpoints[a[i][0]] >= 1 and ypoints[a[i][1]] >= 1): # Add the count of triangles # formed count += ((xpoints[a[i][0]] - 1) * (ypoints[a[i][1]] - 1)) # Total possible triangle return count# Driver Code N = 5# Given N points arr = [ [ 1, 2 ], [ 2, 1 ], [ 2, 2 ], [ 2, 3 ], [ 3, 2 ] ]# Function callprint(RightAngled(arr, N))# This code is contributed by Stuti Pathak |
Java
// Java program for the above approachimport java.util.*;class GFG{// Function to find the number of right// angled triangle that are formed from// given N points whose perpendicular or// base is parallel to X or Y axisstatic int RightAngled(int a[][], int n){ // To store the number of points // has same x or y coordinates HashMap<Integer, Integer> xpoints = new HashMap<Integer, Integer>(); HashMap<Integer, Integer> ypoints = new HashMap<Integer, Integer>(); for (int i = 0; i < n; i++) { if(xpoints.containsKey(a[i][0])) { xpoints.put(a[i][0], xpoints.get(a[i][0]) + 1); } else { xpoints.put(a[i][0], 1); } if(ypoints.containsKey(a[i][1])) { ypoints.put(a[i][1], ypoints.get(a[i][1]) + 1); } else { ypoints.put(a[i][1], 1); } } // Store the total count of triangle int count = 0; // Iterate to check for total number // of possible triangle for (int i = 0; i < n; i++) { if (xpoints.get(a[i][0]) >= 1 && ypoints.get(a[i][1]) >= 1) { // Add the count of triangles // formed count += (xpoints.get(a[i][0]) - 1) * (ypoints.get(a[i][1]) - 1); } } // Total possible triangle return count;}// Driver Codepublic static void main(String[] args){ int N = 5; // Given N points int arr[][] = { { 1, 2 }, { 2, 1 }, { 2, 2 }, { 2, 3 }, { 3, 2 } }; // Function Call System.out.print(RightAngled(arr, N));}}// This code is contributed by Rajput-Ji |
C#
// C# program for the above approachusing System;using System.Collections.Generic;class GFG{ // Function to find the number of right // angled triangle that are formed from // given N points whose perpendicular or // base is parallel to X or Y axis static int RightAngled(int[, ] a, int n) { // To store the number of points // has same x or y coordinates Dictionary<int, int> xpoints = new Dictionary<int, int>(); Dictionary<int, int> ypoints = new Dictionary<int, int>(); for (int i = 0; i < n; i++) { if (xpoints.ContainsKey(a[i, 0])) { xpoints[a[i, 0]] = xpoints[a[i, 0]] + 1; } else { xpoints.Add(a[i, 0], 1); } if (ypoints.ContainsKey(a[i, 1])) { ypoints[a[i, 1]] = ypoints[a[i, 1]] + 1; } else { ypoints.Add(a[i, 1], 1); } } // Store the total count of triangle int count = 0; // Iterate to check for total number // of possible triangle for (int i = 0; i < n; i++) { if (xpoints[a[i, 0]] >= 1 && ypoints[a[i, 1]] >= 1) { // Add the count of triangles // formed count += (xpoints[a[i, 0]] - 1) * (ypoints[a[i, 1]] - 1); } } // Total possible triangle return count; } // Driver Code public static void Main(String[] args) { int N = 5; // Given N points int[, ] arr = {{1, 2}, {2, 1}, {2, 2}, {2, 3}, {3, 2}}; // Function Call Console.Write(RightAngled(arr, N)); }}// This code is contributed by Rajput-Ji |
Javascript
<script> // JavaScript program for the above approach // Function to find the number of right // angled triangle that are formed from // given N points whose perpendicular or // base is parallel to X or Y axis function RightAngled(a, n) { // To store the number of points // has same x or y coordinates var xpoints = {}; var ypoints = {}; for (var i = 0; i < n; i++) { if (xpoints.hasOwnProperty(a[i][0])) { xpoints[a[i][0]] = xpoints[a[i][0]] + 1; } else { xpoints[a[i][0]] = 1; } if (ypoints.hasOwnProperty(a[i][1])) { ypoints[a[i][1]] = ypoints[a[i][1]] + 1; } else { ypoints[a[i][1]] = 1; } } // Store the total count of triangle var count = 0; // Iterate to check for total number // of possible triangle for (var i = 0; i < n; i++) { if (xpoints[a[i][0]] >= 1 && ypoints[a[i][1]] >= 1) { // Add the count of triangles // formed count += (xpoints[a[i][0]] - 1) * (ypoints[a[i][1]] - 1); } } // Total possible triangle return count; } // Driver Code var N = 5; // Given N points var arr = [ [1, 2], [2, 1], [2, 2], [2, 3], [3, 2], ]; // Function Call document.write(RightAngled(arr, N)); </script> |
4
Time Complexity: O(N+N) i.e O(N)
Auxiliary Space: O(N+N) i.e O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




