Count quadruples of given type from given array

Given an array arr[], the task is to find the number of quadruples of the form a[i] = a[k] and a[j] = a[l] ( 0 <= i < j < k < l <= N ) from the given array.
Examples:
Input: arr[] = {1, 2, 4, 2, 1, 5, 2}
Output: 2
Explanation: The quadruple {1, 2, 1, 2} occurs twice in the array, at indices {0, 1, 4, 6} and {0, 3, 4, 6}. Therefore, the required count is 2.Input: arr[] = {1, 2, 3, 2, 1, 3, 2}
Output: 5
Explanation: The quadruple {1, 2, 1, 2} occurs twice in the array at indices {0, 1, 4, 6} and {0, 3, 4, 6}. The quadruples {1, 3, 1, 3}, {3, 2, 3, 2} and {2, 3, 2, 3} occurs once each. Therefore, the required count is 5.
Naive Approach: The simplest approach to solve the problem is to iteratively check all combinations of 4 elements from the given array and check if it satisfies the given condition or not.
Below is the implementation of the above approach:
C++
// C++ program of the // above approach #include <iostream> using namespace std; const int maxN = 2002; // Function to find the count of // the subsequence of given type int countSubsequece(int a[], int n) { int i, j, k, l; // Stores the count // of quadruples int answer = 0; // Generate all possible // combinations of quadruples for (i = 0; i < n; i++) { for (j = i + 1; j < n; j++) { for (k = j + 1; k < n; k++) { for (l = k + 1; l < n; l++) { // Check if 1st element is // equal to 3rd element if (a[j] == a[l] && // Check if 2nd element is // equal to 4th element a[i] == a[k]) { answer++; } } } } } return answer; } // Driver Code int main() { int a[7] = { 1, 2, 3, 2, 1, 3, 2 }; cout << countSubsequece(a, 7); return 0; } |
Java
// Java program of the // above approach import java.util.*; class GFG{ // Function to find the count of // the subsequence of given type static int countSubsequece(int a[], int n) { int i, j, k, l; // Stores the count // of quadruples int answer = 0; // Generate all possible // combinations of quadruples for(i = 0; i < n; i++) { for(j = i + 1; j < n; j++) { for(k = j + 1; k < n; k++) { for(l = k + 1; l < n; l++) { // Check if 1st element is // equal to 3rd element if (a[j] == a[l] && // Check if 2nd element is // equal to 4th element a[i] == a[k]) { answer++; } } } } } return answer; } // Driver code public static void main(String[] args) { int[] a = { 1, 2, 3, 2, 1, 3, 2 }; System.out.print(countSubsequece(a, 7)); } } // This code is contributed by code_hunt |
Python3
# Python3 program of the # above approach maxN = 2002 # Function to find the count of # the subsequence of given type def countSubsequece(a, n): # Stores the count # of quadruples answer = 0 # Generate all possible # combinations of quadruples for i in range(n): for j in range(i + 1, n): for k in range(j + 1, n): for l in range(k + 1, n): # Check if 1st element is # equal to 3rd element if (a[j] == a[l] and # Check if 2nd element is # equal to 4th element a[i] == a[k]): answer += 1 return answer # Driver Code if __name__ == '__main__': a = [ 1, 2, 3, 2, 1, 3, 2 ] print(countSubsequece(a, 7)) # This code is contributed by bgangwar59 |
C#
// C# program of the // above approach using System; class GFG{ // Function to find the count of // the subsequence of given type static int countSubsequece(int[] a, int n) { int i, j, k, l; // Stores the count // of quadruples int answer = 0; // Generate all possible // combinations of quadruples for(i = 0; i < n; i++) { for(j = i + 1; j < n; j++) { for(k = j + 1; k < n; k++) { for(l = k + 1; l < n; l++) { // Check if 1st element is // equal to 3rd element if (a[j] == a[l] && // Check if 2nd element is // equal to 4th element a[i] == a[k]) { answer++; } } } } } return answer; } // Driver Code public static void Main() { int[] a = { 1, 2, 3, 2, 1, 3, 2 }; Console.WriteLine(countSubsequece(a, 7)); } } // This code is contributed by susmitakundugoaldanga |
Javascript
<script> // Javascript program of the above approach // Function to find the count of // the subsequence of given type function countSubsequece(a, n) { let i, j, k, l; // Stores the count // of quadruples let answer = 0; // Generate all possible // combinations of quadruples for(i = 0; i < n; i++) { for(j = i + 1; j < n; j++) { for(k = j + 1; k < n; k++) { for(l = k + 1; l < n; l++) { // Check if 1st element is // equal to 3rd element if (a[j] == a[l] && // Check if 2nd element is // equal to 4th element a[i] == a[k]) { answer++; } } } } } return answer; } let a = [ 1, 2, 3, 2, 1, 3, 2 ]; document.write(countSubsequece(a, 7)); // This code is contributed by mukesh07. </script> |
5
Time Complexity: O(N4)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, the idea is to maintain two arrays to store the count of element X on the left and right side of every index. Follow the steps below to solve the problem:
- Maintain two arrays lcount[i][j] and rcount[i][j] which stores the count of the element i in the indices less than j and rcount[i][j] stores the count of the element i in the indices greater than j.
- Iterate over the nested loop from 1 to N and find all the subsequence of type XYXY
answer += lcount[a[i]][j-1] * rcount[a[j]][i-1]
Below is the implementation of the above approach:
C++
// C++ program of the // above approach #include <cstring> #include <iostream> using namespace std; const int maxN = 2002; // lcount[i][j]: Stores the count of // i on left of index j int lcount[maxN][maxN]; // rcount[i][j]: Stores the count of // i on right of index j int rcount[maxN][maxN]; // Function to count unique elements // on left and right of any index void fill_counts(int a[], int n) { int i, j; // Find the maximum array element int maxA = a[0]; for (i = 0; i < n; i++) { if (a[i] > maxA) { maxA = a[i]; } } memset(lcount, 0, sizeof(lcount)); memset(rcount, 0, sizeof(rcount)); for (i = 0; i < n; i++) { lcount[a[i]][i] = 1; rcount[a[i]][i] = 1; } for (i = 0; i <= maxA; i++) { // Calculate prefix sum of // counts of each value for (j = 0; j < n; j++) { lcount[i][j] = lcount[i][j - 1] + lcount[i][j]; } // Calculate suffix sum of // counts of each value for (j = n - 2; j >= 0; j--) { rcount[i][j] = rcount[i][j + 1] + rcount[i][j]; } } } // Function to count quadruples // of the required type int countSubsequence(int a[], int n) { int i, j; fill_counts(a, n); int answer = 0; for (i = 1; i < n; i++) { for (j = i + 1; j < n - 1; j++) { answer += lcount[a[j]][i - 1] * rcount[a[i]][j + 1]; } } return answer; } // Driver Code int main() { int a[7] = { 1, 2, 3, 2, 1, 3, 2 }; cout << countSubsequence(a, 7); return 0; } |
Java
// Java program of the // above approach import java.util.*; class GFG{ static int maxN = 2002; // lcount[i][j]: Stores the // count of i on left of index j static int [][]lcount = new int[maxN][maxN]; // rcount[i][j]: Stores the // count of i on right of index j static int [][]rcount = new int[maxN][maxN]; // Function to count unique // elements on left and right // of any index static void fill_counts(int a[], int n) { int i, j; // Find the maximum // array element int maxA = a[0]; for (i = 0; i < n; i++) { if (a[i] > maxA) { maxA = a[i]; } } for (i = 0; i < n; i++) { lcount[a[i]][i] = 1; rcount[a[i]][i] = 1; } for (i = 0; i <= maxA; i++) { // Calculate prefix sum of // counts of each value for (j = 1; j < n; j++) { lcount[i][j] = lcount[i][j - 1] + lcount[i][j]; } // Calculate suffix sum of // counts of each value for (j = n - 2; j >= 0; j--) { rcount[i][j] = rcount[i][j + 1] + rcount[i][j]; } } } // Function to count quadruples // of the required type static int countSubsequence(int a[], int n) { int i, j; fill_counts(a, n); int answer = 0; for (i = 1; i < n; i++) { for (j = i + 1; j < n - 1; j++) { answer += lcount[a[j]][i - 1] * rcount[a[i]][j + 1]; } } return answer; } // Driver Code public static void main(String[] args) { int a[] = {1, 2, 3, 2, 1, 3, 2}; System.out.print( countSubsequence(a, a.length)); } } // This code is contributed by shikhasingrajput |
Python3
# Python3 program of the # above approach maxN = 2002 # lcount[i][j]: Stores the count of # i on left of index j lcount = [[0 for i in range(maxN)] for j in range(maxN)] # rcount[i][j]: Stores the count of # i on right of index j rcount = [[0 for i in range(maxN)] for j in range(maxN)] # Function to count unique elements # on left and right of any index def fill_counts(a, n): # Find the maximum array element maxA = a[0] for i in range(n): if (a[i] > maxA): maxA = a[i] for i in range(n): lcount[a[i]][i] = 1 rcount[a[i]][i] = 1 for i in range(maxA + 1): # Calculate prefix sum of # counts of each value for j in range(n) : lcount[i][j] = (lcount[i][j - 1] + lcount[i][j]) # Calculate suffix sum of # counts of each value for j in range(n - 2, -1, -1): rcount[i][j] = (rcount[i][j + 1] + rcount[i][j]) # Function to count quadruples # of the required type def countSubsequence(a, n): fill_counts(a, n) answer = 0 for i in range(1, n): for j in range(i + 1, n - 1): answer += (lcount[a[j]][i - 1] * rcount[a[i]][j + 1]) return answer # Driver Code a = [ 1, 2, 3, 2, 1, 3, 2 ] print(countSubsequence(a, 7)) # This code is contributed by divyesh072019 |
C#
// C# program of the // above approach using System; class GFG{ static int maxN = 2002; // lcount[i,j]: Stores the // count of i on left of index j static int [,]lcount = new int[maxN, maxN]; // rcount[i,j]: Stores the // count of i on right of index j static int [,]rcount = new int[maxN, maxN]; // Function to count unique // elements on left and right // of any index static void fill_counts(int []a, int n) { int i, j; // Find the maximum // array element int maxA = a[0]; for(i = 0; i < n; i++) { if (a[i] > maxA) { maxA = a[i]; } } for(i = 0; i < n; i++) { lcount[a[i], i] = 1; rcount[a[i], i] = 1; } for(i = 0; i <= maxA; i++) { // Calculate prefix sum of // counts of each value for (j = 1; j < n; j++) { lcount[i, j] = lcount[i, j - 1] + lcount[i, j]; } // Calculate suffix sum of // counts of each value for(j = n - 2; j >= 0; j--) { rcount[i, j] = rcount[i, j + 1] + rcount[i, j]; } } } // Function to count quadruples // of the required type static int countSubsequence(int []a, int n) { int i, j; fill_counts(a, n); int answer = 0; for(i = 1; i < n; i++) { for(j = i + 1; j < n - 1; j++) { answer += lcount[a[j], i - 1] * rcount[a[i], j + 1]; } } return answer; } // Driver Code public static void Main(String[] args) { int []a = { 1, 2, 3, 2, 1, 3, 2 }; Console.Write( countSubsequence(a, a.Length)); } } // This code is contributed by Princi Singh |
Javascript
<script> // Javascript program of the // above approach let maxN = 2002; // lcount[i][j]: Stores the // count of i on left of index j let lcount = new Array(maxN); // rcount[i][j]: Stores the // count of i on right of index j let rcount = new Array(maxN); for(let i = 0; i < maxN; i++) { lcount[i] = new Array(maxN); rcount[i] = new Array(maxN); for(let j = 0; j < maxN; j++) { lcount[i][j] = 0; rcount[i][j] = 0; } } // Function to count unique // elements on left and right // of any index function fill_counts(a,n) { let i, j; // Find the maximum // array element let maxA = a[0]; for (i = 0; i < n; i++) { if (a[i] > maxA) { maxA = a[i]; } } for (i = 0; i < n; i++) { lcount[a[i]][i] = 1; rcount[a[i]][i] = 1; } for (i = 0; i <= maxA; i++) { // Calculate prefix sum of // counts of each value for (j = 1; j < n; j++) { lcount[i][j] = lcount[i][j - 1] + lcount[i][j]; } // Calculate suffix sum of // counts of each value for (j = n - 2; j >= 0; j--) { rcount[i][j] = rcount[i][j + 1] + rcount[i][j]; } } } // Function to count quadruples // of the required type function countSubsequence(a,n) { let i, j; fill_counts(a, n); let answer = 0; for (i = 1; i < n; i++) { for (j = i + 1; j < n - 1; j++) { answer += lcount[a[j]][i - 1] * rcount[a[i]][j + 1]; } } return answer; } // Driver Code let a=[1, 2, 3, 2, 1, 3, 2]; document.write(countSubsequence(a, a.length)); // This code is contributed by rag2127 </script> |
5
Time Complexity: O(N2)
Auxiliary Space: O(N2)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



