Count squares with odd side length in Chessboard

Given a N * N chessboard, the task is to count the number of squares having the odd side length.
Example:
Input: N = 3
Output: 10
9 squares are possible whose sides are 1
and a single square with side = 3
9 + 1 = 10
Input: N = 8
Output: 120
Approach: For all odd numbers from 1 to N and then calculate the number of squares that can be formed having that odd side. For the ith side, the count of squares is equal to (N – i + 1)2. Further, add all such counts of squares.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to return the count// of odd length squares possibleint count_square(int n){ // To store the required count int count = 0; // For all odd values of i for (int i = 1; i <= n; i = i + 2) { // Add the count of possible // squares of length i int k = n - i + 1; count += (k * k); } // Return the required count return count;}// Driver codeint main(){ int N = 8; cout << count_square(N); return 0;} |
Java
// Java implementation of the approachclass GFG { // Function to return the count // of odd length squares possible static int count_square(int n) { // To store the required count int count = 0; // For all odd values of i for (int i = 1; i <= n; i = i + 2) { // Add the count of possible // squares of length i int k = n - i + 1; count += (k * k); } // Return the required count return count; } // Driver code public static void main(String[] args) { int N = 8; System.out.println(count_square(N)); }}// This code is contributed by Rajput-Ji |
Python3
# Python implementation of the approach# Function to return the count# of odd length squares possibledef count_square(n): # To store the required count count = 0; # For all odd values of i for i in range(1, n + 1, 2): # Add the count of possible # squares of length i k = n - i + 1; count += (k * k); # Return the required count return count;# Driver codeN = 8;print(count_square(N));# This code has been contributed by 29AjayKumar |
C#
// C# implementation of the approachusing System;class GFG { // Function to return the count // of odd length squares possible static int count_square(int n) { // To store the required count int count = 0; // For all odd values of i for (int i = 1; i <= n; i = i + 2) { // Add the count of possible // squares of length i int k = n - i + 1; count += (k * k); } // Return the required count return count; } // Driver code public static void Main() { int N = 8; Console.WriteLine(count_square(N)); }}// This code is contributed by Code_Mech. |
PHP
<?php// PHP implementation of the approach // Function to return the count // of odd length squares possible function count_square($n) { // To store the required count $count = 0; // For all odd values of i for ($i = 1; $i <= $n; $i = $i + 2) { // Add the count of possible // squares of length i $k =$n - $i + 1; $count += ($k * $k); } // Return the required count return $count; } // Driver code $N = 8; echo count_square($N); // This code is contributed by AnkitRai01?> |
Javascript
<Script>// Javascript implementation of the approach// Function to return the count// of odd length squares possiblefunction count_square(n){ // To store the required count let count = 0; // For all odd values of i for (let i = 1; i <= n; i = i + 2) { // Add the count of possible // squares of length i let k = n - i + 1; count += (k * k); } // Return the required count return count;}// Driver code let N = 8; document.write(count_square(N));</script> |
Output:
120
Time Complexity: O(N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



