Unique subsequences of length K with given sum

Given an array arr[] of N integers and two numbers K and S, the task is to print all the subsequence of length K with the sum S.
Examples:
Input: N = 5, K = 3, S = 20, arr[] = {4, 6, 8, 2, 12}
Output:
{6, 2, 12}
Explanation:
Only one subsequence of size 3 with a sum 20 is possible i.e., {6, 2, 12} and sum is 6 + 2 + 12 = 20
Input: N = 10, K = 5, S = 25, arr[] = {2, 4, 6, 8, 10, 12, 1, 2, 5, 7}
Output:
{10, 1, 2, 5, 7}
{4, 8, 1, 5, 7}
{4, 8, 10, 1, 2}
{4, 6, 12, 1, 2}
{4, 6, 8, 2, 5}
{2, 10, 1, 5, 7}
{2, 8, 12, 1, 2}
{2, 6, 10, 2, 5}
{2, 6, 8, 2, 7}
{2, 4, 12, 2, 5}
{2, 4, 10, 2, 7}
{2, 4, 8, 10, 1}
{2, 4, 6, 12, 1}
{2, 4, 6, 8, 5}
Approach: The idea is to use Backtracking to print all the subsequence with given sum S. Below are the steps:
- Iterate for all the value of the array arr[] and do the following:
- If we include the current element in the resultant subsequence then, decrement K and the above value of current element to the sum S.
- Recursively iterate from next index of the element to the end of the array to find the resultant subsequence.
- If K is 0 and S is 0 then we got our one of the resultant subsequence of length K and sum S, print this subsequence and backtrack for the next resulting subsequence.
- If we doesn’t include the current element then, find the resultant subsequence by excluding the current element and repeating the above procedure for the rest of the element in the array.
- Resultant array in the steps 3 will give all the possible subsequence of length K with given sum S.
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>using namespace std;// Function to find all the subsequences// of a given length and having sum Svoid comb(int* arr, int len, int r, int ipos, int* op, int opos, int sum){ // Termination condition if (opos == r) { int sum2 = 0; for (int i = 0; i < opos; i++) { // Add value to sum sum2 = sum2 + op[i]; } // Check if the resultant sum // equals to target sum if (sum == sum2) { // If true for (int i = 0; i < opos; i++) // Print resultant array cout << op[i] << ", "; cout << endl; } // End this recursion stack return; } if (ipos < len) { // Check all the combinations // using backtracking comb(arr, len, r, ipos + 1, op, opos, sum); op[opos] = arr[ipos]; // Check all the combinations // using backtracking comb(arr, len, r, ipos + 1, op, opos + 1, sum); }}// Driver Codeint main(){ // Given array int arr[] = { 4, 6, 8, 2, 12 }; int K = 3; int S = 20; int N = sizeof(arr) / sizeof(arr[0]); // To store the subsequence int op[N] = { 0 }; // Function Call comb(arr, N, K, 0, op, 0, S); return 0;} |
Java
// Java program for the above approachimport java.util.*;class GFG{// Function to find all the subsequences// of a given length and having sum Sstatic void comb(int []arr, int len, int r, int ipos, int[] op, int opos, int sum){ // Termination condition if (opos == r) { int sum2 = 0; for(int i = 0; i < opos; i++) { // Add value to sum sum2 = sum2 + op[i]; } // Check if the resultant sum // equals to target sum if (sum == sum2) { // If true for(int i = 0; i < opos; i++) // Print resultant array System.out.print(op[i] + ", "); System.out.println(); } // End this recursion stack return; } if (ipos < len) { // Check all the combinations // using backtracking comb(arr, len, r, ipos + 1, op, opos, sum); op[opos] = arr[ipos]; // Check all the combinations // using backtracking comb(arr, len, r, ipos + 1, op, opos + 1, sum); }}// Driver Codepublic static void main(String[] args){ // Given array int arr[] = { 4, 6, 8, 2, 12 }; int K = 3; int S = 20; int N = arr.length; // To store the subsequence int op[] = new int[N]; // Function Call comb(arr, N, K, 0, op, 0, S);}}// This code is contributed by amal kumar choubey |
Python3
# Python3 program for the above approach# Function to find all the subsequences # of a given length and having sum S def comb(arr, Len, r, ipos, op, opos, Sum): # Termination condition if (opos == r): sum2 = 0 for i in range(opos): # Add value to sum sum2 = sum2 + op[i] # Check if the resultant sum # equals to target sum if (Sum == sum2): # If true for i in range(opos): # Print resultant array print(op[i], end = ", ") print() # End this recursion stack return if (ipos < Len): # Check all the combinations # using backtracking comb(arr, Len, r, ipos + 1, op, opos, Sum) op[opos] = arr[ipos] # Check all the combinations # using backtracking comb(arr, Len, r, ipos + 1, op, opos + 1, Sum)# Driver codeif __name__ == '__main__': # Given array arr = [ 4, 6, 8, 2, 12 ] K = 3 S = 20 N = len(arr) # To store the subsequence op = [0] * N # Function call comb(arr, N, K, 0, op, 0, S)# This code is contributed by himanshu77 |
C#
// C# program for the above approachusing System;class GFG{// Function to find all the subsequences// of a given length and having sum Sstatic void comb(int []arr, int len, int r, int ipos, int[] op, int opos, int sum){ // Termination condition if (opos == r) { int sum2 = 0; for(int i = 0; i < opos; i++) { // Add value to sum sum2 = sum2 + op[i]; } // Check if the resultant sum // equals to target sum if (sum == sum2) { // If true for(int i = 0; i < opos; i++) // Print resultant array Console.Write(op[i] + ", "); Console.WriteLine(); } // End this recursion stack return; } if (ipos < len) { // Check all the combinations // using backtracking comb(arr, len, r, ipos + 1, op, opos, sum); op[opos] = arr[ipos]; // Check all the combinations // using backtracking comb(arr, len, r, ipos + 1, op, opos + 1, sum); }}// Driver Codepublic static void Main(String[] args){ // Given array int []arr = { 4, 6, 8, 2, 12 }; int K = 3; int S = 20; int N = arr.Length; // To store the subsequence int []op = new int[N]; // Function call comb(arr, N, K, 0, op, 0, S);}}// This code is contributed by amal kumar choubey |
Javascript
<script>// JavaScript program for the above approach// Function to find all the subsequences// of a given length and having sum Sfunction comb(arr, len, r, ipos, op, opos, sum){ // Termination condition if (opos == r) { let sum2 = 0; for(let i = 0; i < opos; i++) { // Add value to sum sum2 = sum2 + op[i]; } // Check if the resultant sum // equals to target sum if (sum == sum2) { // If true for(let i = 0; i < opos; i++) // Print resultant array document.write(op[i] + ", "); document.write(); } // End this recursion stack return; } if (ipos < len) { // Check all the combinations // using backtracking comb(arr, len, r, ipos + 1, op, opos, sum); op[opos] = arr[ipos]; // Check all the combinations // using backtracking comb(arr, len, r, ipos + 1, op, opos + 1, sum); }} // Driver Code // Given array let arr = [ 4, 6, 8, 2, 12 ]; let K = 3; let S = 20; let N = arr.length; // To store the subsequence let op = Array.from({length: N}, (_, i) => 0); // Function Call comb(arr, N, K, 0, op, 0, S);// This code is contributed by sanjoy_62.</script> |
Output:
6, 2, 12,
Time Complexity: O(2^N * K)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



