Find if there is a path between two vertices in a directed graph | Set 2

Given a Directed Graph and two vertices in it, check whether there is a path from the first given vertex to second.
Example:
Consider the following Graph:
Input : (u, v) = (1, 3)
Output: Yes
Explanation:
There is a path from 1 to 3, 1 -> 2 -> 3Input : (u, v) = (3, 6)
Output: No
Explanation:
There is no path from 3 to 6
A BFS or DFS based solution of this problem is discussed here.
Approach: Here we will discuss a Dynamic Programming based solution using Floyd Warshall Algorithm.
- Create a boolean 2D matrix mat where mat[i][j] will be true if there is a path from vertex i to j.
- For every starting vertex i and ending vertex j iterate over all intermediate vertex k and do check if there is a path for i to j through k then mark mat[i][j] as true.
- Finally, check if mat[u][v] is true then return true else return false.
Below is the implementation of the above approach:
C++
// C++ program to find if there is a// path between two vertices in a// directed graph using Dynamic Programming#include <bits/stdc++.h>using namespace std;#define X 6#define Z 2// function to find if there is a// path between two vertices in a// directed graphbool existPath(int V, int edges[X][Z], int u, int v){ // dp matrix bool mat[V][V]; memset(mat, false, sizeof(mat)); // set dp[i][j]=true if there is // edge between i to j for (int i = 0; i < X; i++) mat[edges[i][0]][edges[i][1]] = true; // check for all intermediate vertex for (int k = 0; k < V; k++) { for (int i = 0; i < V; i++) { for (int j = 0; j < V; j++) { mat[i][j] = mat[i][j] || mat[i][k] && mat[k][j]; } } } // if vertex is invalid if (u >= V || v >= V) { return false; } // if there is a path if (mat[u][v]) return true; return false;}// Driver functionint main(){ int V = 4; int edges[X][Z] = { { 0, 2 }, { 0, 1 }, { 1, 2 }, { 2, 3 }, { 2, 0 }, { 3, 3 } }; int u = 1, v = 3; if (existPath(V, edges, u, v)) cout << "Yes\n"; else cout << "No\n"; return 0;} |
Java
// Java program to find if there is a path // between two vertices in a directed graph// using Dynamic Programmingimport java.util.*;class GFG{ static final int X = 6;static final int Z = 2;// Function to find if there is a// path between two vertices in a// directed graphstatic boolean existPath(int V, int edges[][], int u, int v){ // mat matrix boolean [][]mat = new boolean[V][V]; // set mat[i][j]=true if there is // edge between i to j for (int i = 0; i < X; i++) mat[edges[i][0]][edges[i][1]] = true; // Check for all intermediate vertex for(int k = 0; k < V; k++) { for(int i = 0; i < V; i++) { for(int j = 0; j < V; j++) { mat[i][j] = mat[i][j] || mat[i][k] && mat[k][j]; } } } // If vertex is invalid if (u >= V || v >= V) { return false; } // If there is a path if (mat[u][v]) return true; return false;}// Driver codepublic static void main(String[] args){ int V = 4; int edges[][] = { { 0, 2 }, { 0, 1 }, { 1, 2 }, { 2, 3 }, { 2, 0 }, { 3, 3 } }; int u = 1, v = 3; if (existPath(V, edges, u, v)) System.out.print("Yes\n"); else System.out.print("No\n");}}// This code is contributed by Princi Singh |
Python3
# Python3 program to find if there# is a path between two vertices in a# directed graph using Dynamic ProgrammingX = 6Z = 2 # Function to find if there is a# path between two vertices in a# directed graphdef existPath(V, edges, u, v): # dp matrix mat = [[False for i in range(V)] for j in range(V)] # Set dp[i][j]=true if there is # edge between i to j for i in range(X): mat[edges[i][0]][edges[i][1]] = True # Check for all intermediate vertex for k in range(V): for i in range(V): for j in range(V): mat[i][j] = (mat[i][j] or mat[i][k] and mat[k][j]) # If vertex is invalid if (u >= V or v >= V): return False # If there is a path if (mat[u][v]): return True return False# Driver code V = 4edges = [ [ 0, 2 ], [ 0, 1 ], [ 1, 2 ], [ 2, 3 ], [ 2, 0 ], [ 3, 3 ] ] u, v = 1, 3if (existPath(V, edges, u, v)): print("Yes")else: print("No")# This code is contributed by divyeshrabadiya07 |
C#
// C# program to find if there is a path // between two vertices in a directed graph// using Dynamic Programmingusing System;class GFG{ static readonly int X = 6;static readonly int Z = 2;// Function to find if there is a// path between two vertices in a// directed graphstatic bool existPath(int V, int [,]edges, int u, int v){ // mat matrix bool [,]mat = new bool[V, V]; // set mat[i,j]=true if there is // edge between i to j for (int i = 0; i < X; i++) mat[edges[i, 0], edges[i, 1]] = true; // Check for all intermediate vertex for(int k = 0; k < V; k++) { for(int i = 0; i < V; i++) { for(int j = 0; j < V; j++) { mat[i, j] = mat[i, j] || mat[i, k] && mat[k, j]; } } } // If vertex is invalid if (u >= V || v >= V) { return false; } // If there is a path if (mat[u, v]) return true; return false;}// Driver codepublic static void Main(String[] args){ int V = 4; int [,]edges = { { 0, 2 }, { 0, 1 }, { 1, 2 }, { 2, 3 }, { 2, 0 }, { 3, 3 } }; int u = 1, v = 3; if (existPath(V, edges, u, v)) Console.Write("Yes\n"); else Console.Write("No\n");}}// This code is contributed by sapnasingh4991 |
Javascript
<script>// Javascript program to find if there is a path // between two vertices in a directed graph// using Dynamic Programming var X = 6;var Z = 2;// Function to find if there is a// path between two vertices in a// directed graphfunction existPath(V, edges, u, v){ // mat matrix var mat = Array.from(Array(V), ()=>Array(V)); // set mat[i,j]=true if there is // edge between i to j for (var i = 0; i < X; i++) mat[edges[i][0]][edges[i][1]] = true; // Check for all intermediate vertex for(var k = 0; k < V; k++) { for(var i = 0; i < V; i++) { for(var j = 0; j < V; j++) { mat[i][j] = mat[i][j] || mat[i][k] && mat[k][j]; } } } // If vertex is invalid if (u >= V || v >= V) { return false; } // If there is a path if (mat[u][v]) return true; return false;}// Driver codevar V = 4;var edges = [ [ 0, 2 ], [ 0, 1 ], [ 1, 2 ], [ 2, 3 ], [ 2, 0 ], [ 3, 3 ] ];var u = 1, v = 3;if (existPath(V, edges, u, v)) document.write("Yes<br>");else document.write("No<br>");</script> |
Output:
Yes
Time Complexity : O ( V 3)
Auxiliary Space : O ( V 2)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




