Find the area of quadrilateral when diagonal and the perpendiculars to it from opposite vertices are given

Given three integers d, h1, h2 where d represents the length of the diagonal of a quadrilateral. h1 and h2 represents the lengths of the perpendiculars to the given diagonal from the opposite vertices. The task is to find the area of the Quadrilateral.
 

Examples: 
 

Input : d= 6, h1 = 4, h2 = 3 
Output : 21
Input : d= 10, h1 = 8, h2 = 10 
Output : 90 
 

 

Approach : 
Area of the quadrilateral is the sum of the areas of both triangles. We know that the area of the triangle is 1/2*base*height.
Therefore, the area of a quadrilateral can be calculated as : 
 

Area = 1/2 * d * h1 + 1/2 * d * h2 
= 1/2 * d * ( h1 + h2 ) 
 

Below is the implementation of the above approach : 
 

C++




// C++ program to find the area of quadrilateral
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the area of quadrilateral
float Area(int d, int h1, int h2)
{
    float area;
 
    area = 0.5 * d * (h1 + h2);
 
    return area;
}
 
// Driver code
int main()
{
    int d = 6, h1 = 4, h2 = 3;
 
    cout << "Area of Quadrilateral = " << (Area(d, h1, h2));
 
    return 0;
}


Java




// Java program to find the area of quadrilateral
class GFG
{
 
    // Function to find the area of quadrilateral
    static float Area(int d, int h1, int h2)
    {
        float area;
 
        area = (float) 0.5 * d * (h1 + h2);
 
        return area;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int d = 6, h1 = 4, h2 = 3;
 
        System.out.println("Area of Quadrilateral = " +
                                      Area(d, h1, h2));
    }
}
 
// This code is contributed by Princi Singh


Python3




# Python3 program to find
# the area of quadrilateral
 
# Function to find the
# area of quadrilateral
def Area(d, h1, h2):
 
    area = 0.5 * d * (h1 + h2);
 
    return area;
 
# Driver code
if __name__ == '__main__':
     
    d = 6;
    h1 = 4;
    h2 = 3;
 
    print("Area of Quadrilateral = ",
                  (Area(d, h1, h2)));
 
# This code is contributed by Rajput-Ji


C#




// C# program to find the area of quadrilateral
using System;
 
class GFG
{
     
// Function to find the area of quadrilateral
static float Area(int d, int h1, int h2)
{
    float area;
 
    area = (float)0.5 * d * (h1 + h2);
 
    return area;
}
 
 
// Driver code
public static void Main()
{
    int d = 6, h1 = 4, h2 = 3;
     
    Console.WriteLine("Area of Quadrilateral = " +
                                 Area(d, h1, h2));
}
}
 
// This code is contributed by nidhiva


Javascript




<script>
 
// JavaScript program to find the area of quadrilateral
 
// Function to find the area of quadrilateral
function Area(d, h1, h2)
{
    let area;
 
    area = 0.5 * d * (h1 + h2);
 
    return area;
}
 
// Driver code
 
    let d = 6, h1 = 4, h2 = 3;
 
    document.write("Area of Quadrilateral = " + (Area(d, h1, h2)));
 
 
// This code is contributed by Surbhi Tyagi.
 
</script>


Output: 

Area of Quadrilateral = 21

 

Time Complexity: O(1)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button