Maximize the minimum array element by M subarray increments of size S

Given an array arr[] of N integers and two integers S and M, the task is to maximize the minimum array element by incrementing any subarray of size S by 1, M number of times.
Examples:
Input: arr[] = {1, 2, 3, 4, 5, 6}, S = 2, M = 3
Output: 3
Explanation:
Below are the operations performed:
Operation 1: Select subarray {1, 2} and after increment, array arr[] becomes = {2, 3, 3, 4, 5, 6}.
Operation 2: Select subarray {2, 3} and after increment, array arr[] becomes = {3, 4, 3, 4, 5, 6}.
Operation 3: Select subarray {3, 4} and after increment, array arr[] becomes = {4, 5, 3, 4, 5, 6}.
After the above operations, the minimum element of the array is 3.Input: arr[] = {3, 5, 2, 7, 3}, S = 3, M = 3
Output: 4
Explanation:
Below are the operations performed:
Operation 1: Select subarray {3, 5, 2} and after increment, array arr[] becomes = {4, 6, 3, 7, 3}.
Operation 2: Select subarray {4, 6, 3} and after increment, array arr[] becomes = {5, 7, 4, 7, 3}.
Operation 3: Select subarray {4, 7, 3} and after increment, array arr[] becomes = {5, 7, 5, 8, 4}.
After the above operations, the minimum element of the array is 4.
Approach: The idea is to find the minimum element of the array M number of times and increment subarrays of size S from that minimum element by 1. Follow the steps below to solve the problem:
- Traverse over the array M number of times and for each iteration do the following:
- Find the minimum element of the array arr[]. Let the first index of the minimum element be idx.
- Increment the current minimum element by 1.
- Now take two pointers leftIdx as idx – 1 and rightIdx as idx + 1.
- If the element at leftIdx is less than the element at rightIdx then increment A[leftIndex] by 1 and decrement leftIndex by 1. Otherwise, increment A[rightIndex] by 1 and rightIndex by 1. Continue this step till (S – 1) elements are processed.
- After the above iterations, print the minimum element of the updated array.
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>using namespace std;// Function to return index of minimum// element in the arrayint min(int a[], int n){ // Initialize a[0] as minValue int minIndex = 0, minValue = a[0], i; // Traverse the array for (i = 1; i < n; i++) { // If a[i] < existing minValue if (a[i] < minValue) { minValue = a[i]; minIndex = i; } } // Return the minimum index return minIndex;}// Function that maximize the minimum// element of array after incrementing// subarray of size S by 1, M timesint maximizeMin(int A[], int N, int S, int M){ int minIndex, left, right, i, j; // Iterating through the array // for M times for (i = 0; i < M; i++) { // Find minimum element index minIndex = min(A, N); // Increment the minimum value A[minIndex]++; // Storing the left index // and right index left = minIndex - 1; right = minIndex + 1; // Incrementing S - 1 minimum // elements to the left and // right of minValue for (j = 0; j < S - 1; j++) { // Reached extreme left if (left == -1) A[right++]++; // Reached extreme right else if (right == N) A[left--]++; else { // Left value is minimum if (A[left] < A[right]) A[left--]++; // Right value is minimum else A[right++]++; } } } // Find the minValue in A[] after // M operations minIndex = min(A, N); // Return the minimum value return A[minIndex];}// Driver Codeint main(){ int arr[] = { 1, 2, 3, 4, 5, 6 }; int N = sizeof(arr) / sizeof(arr[0]); int S = 2, M = 3; // Function Call cout << maximizeMin(arr, N, S, M); return 0;} |
Java
// Java program for the // above approachimport java.util.*;class solution{// Function to return index// of minimum element in the // arraystatic int min1(int a[], int n){ // Initialize a[0] as // minValue int minIndex = 0, minValue = a[0], i; // Traverse the array for (i = 1; i < n; i++) { // If a[i] < existing // minValue if (a[i] < minValue) { minValue = a[i]; minIndex = i; } } // Return the minimum index return minIndex;}// Function that maximize the minimum// element of array after incrementing// subarray of size S by 1, M timesstatic int maximizeMin(int A[], int N, int S, int M){ int minIndex, left, right, i, j; // Iterating through the // array or M times for (i = 0; i < M; i++) { // Find minimum element // index minIndex = min1(A, N); // Increment the minimum // value A[minIndex]++; // Storing the left index // and right index left = minIndex - 1; right = minIndex + 1; // Incrementing S - 1 minimum // elements to the left and // right of minValue for (j = 0; j < S - 1; j++) { // Reached extreme left if (left == -1) A[right++]++; // Reached extreme right else if (right == N) A[left--]++; else { // Left value is minimum if (A[left] < A[right]) A[left--]++; // Right value is minimum else A[right++]++; } } } // Find the minValue in A[] after // M operations minIndex = min1(A, N); // Return the minimum value return A[minIndex];}// Driver Codepublic static void main(String args[]){ int []arr = {1, 2, 3, 4, 5, 6}; int N = arr.length; int S = 2, M = 3; // Function Call System.out.print(maximizeMin(arr, N, S, M));}}// This code is contributed by SURENDRA_GANGWAR |
Python3
# Python3 program for the above approach# Function to return index of minimum# element in the arraydef min(a, n): # Initialize a[0] as minValue minIndex = 0 minValue = a[0] # Traverse the array for i in range(1, n): # If a[i] < existing minValue if (a[i] < minValue): minValue = a[i] minIndex = i # Return the minimum index return minIndex# Function that maximize the minimum# element of array after incrementing# subarray of size S by 1, M timesdef maximizeMin(A, N, S, M): minIndex, left, right = 0, 0, 0 # Iterating through the array # for M times for i in range(M): # Find minimum element index minIndex = min(A, N) # Increment the minimum value A[minIndex] += 1 # Storing the left index # and right index left = minIndex - 1 right = minIndex + 1 # Incrementing S - 1 minimum # elements to the left and # right of minValue for j in range(S - 1): # Reached extreme left if (left == -1): A[right] += 1 right += 1 # Reached extreme right elif (right == N): A[left] += 1 left -= 1 else: # Left value is minimum if (A[left] < A[right]): A[left] += 1 left -= 1 # Right value is minimum else: A[right] += 1 right += 1 # Find the minValue in A[] after # M operations minIndex = min(A, N) # Return the minimum value return A[minIndex]# Driver Codeif __name__ == '__main__': arr = [ 1, 2, 3, 4, 5, 6 ] N = len(arr) S = 2 M = 3 #Function Call print(maximizeMin(arr, N, S, M))# This code is contributed by mohit kumar 29 |
C#
// C# program for the // above approachusing System;class GFG{ // Function to return index// of minimum element in the // arraystatic int min1(int[] a, int n){ // Initialize a[0] as // minValue int minIndex = 0, minValue = a[0], i; // Traverse the array for (i = 1; i < n; i++) { // If a[i] < existing // minValue if (a[i] < minValue) { minValue = a[i]; minIndex = i; } } // Return the minimum // index return minIndex;} // Function that maximize the // minimum element of array // after incrementing subarray // of size S by 1, M timesstatic int maximizeMin(int[] A, int N, int S, int M){ int minIndex, left, right, i, j; // Iterating through the // array or M times for (i = 0; i < M; i++) { // Find minimum element // index minIndex = min1(A, N); // Increment the minimum // value A[minIndex]++; // Storing the left index // and right index left = minIndex - 1; right = minIndex + 1; // Incrementing S - 1 minimum // elements to the left and // right of minValue for (j = 0; j < S - 1; j++) { // Reached extreme left if (left == -1) A[right++]++; // Reached extreme right else if (right == N) A[left--]++; else { // Left value is minimum if (A[left] < A[right]) A[left--]++; // Right value is minimum else A[right++]++; } } } // Find the minValue in A[] after // M operations minIndex = min1(A, N); // Return the minimum value return A[minIndex];} // Driver codestatic void Main() { int[] arr = {1, 2, 3, 4, 5, 6}; int N = arr.Length; int S = 2, M = 3; // Function Call Console.Write(maximizeMin(arr, N, S, M));}}// This code is contributed by divyeshrabadiya07 |
Javascript
<script>// JavaScript program to implement// the above approach// Function to return index// of minimum element in the// arrayfunction min1(a, n){ // Initialize a[0] as // minValue let minIndex = 0, minValue = a[0], i; // Traverse the array for (i = 1; i < n; i++) { // If a[i] < existing // minValue if (a[i] < minValue) { minValue = a[i]; minIndex = i; } } // Return the minimum index return minIndex;} // Function that maximize the minimum// element of array after incrementing// subarray of size S by 1, M timesfunction maximizeMin(A, N, S, M){ let minIndex, left, right, i, j; // Iterating through the // array or M times for (i = 0; i < M; i++) { // Find minimum element // index minIndex = min1(A, N); // Increment the minimum // value A[minIndex]++; // Storing the left index // and right index left = minIndex - 1; right = minIndex + 1; // Incrementing S - 1 minimum // elements to the left and // right of minValue for (j = 0; j < S - 1; j++) { // Reached extreme left if (left == -1) A[right++]++; // Reached extreme right else if (right == N) A[left--]++; else { // Left value is minimum if (A[left] < A[right]) A[left--]++; // Right value is minimum else A[right++]++; } } } // Find the minValue in A[] after // M operations minIndex = min1(A, N); // Return the minimum value return A[minIndex];} // Driver Code let arr = [1, 2, 3, 4, 5, 6]; let N = arr.length; let S = 2, M = 3; // Function Call document.write(maximizeMin(arr, N, S, M)); </script> |
3
Time Complexity: O(M*N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



