Maximize the value of x + y + z such that ax + by + cz = n

Given integers n, a, b and c, the task is to find the maximum value of x + y + z such that ax + by + cz = n.

Examples: 

Input: 
n = 10
a = 5
b = 3
c = 4 
Output: 

Explanation:
x = 0, y = 2 and z = 1

Input: 
n = 50
a = 8
b = 10
c = 2 
Output: 
25 
Explanation:
x = 0, y = 0 and z = 25 

Approach: Fix the values of x and y then the value of z can be calculated as z = (n – (ax + by)) / c. If current value of z is an integer then update the maximum value of x + y + z found so far.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the maximum value of (x + y + z)
// such that (ax + by + cz = n)
int maxResult(int n, int a, int b, int c)
{
    int maxVal = 0;
 
    // i represents possible values of a * x
    for (int i = 0; i <= n; i += a)
    {
        // j represents possible values of b * y
        for (int j = 0; j <= n - i; j += b)
        {
            float z = (float)(n - (i + j)) / (float)(c);
 
            // If z is an integer
            if (floor(z) == ceil(z))
            {
                int x = i / a;
                int y = j / b;
                maxVal = max(maxVal, x + y + (int)z);
            }
        }
    }
 
    return maxVal;
}
 
// Driver code
int main()
{
    int n = 10, a = 5, b = 3, c = 4;
   
      // Function Call
    cout << maxResult(n, a, b, c);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG {
 
    // Function to return the maximum value of (x + y + z)
    // such that (ax + by + cz = n)
    static int maxResult(int n, int a, int b, int c)
    {
        int maxVal = 0;
 
        // i represents possible values of a * x
        for (int i = 0; i <= n; i += a)
 
            // j represents possible values of b * y
            for (int j = 0; j <= n - i; j += b) {
                float z = (float)(n - (i + j)) / (float)c;
 
                // If z is an integer
                if (Math.floor(z) == Math.ceil(z)) {
                    int x = i / a;
                    int y = j / b;
                    maxVal
                        = Math.max(maxVal, x + y + (int)z);
                }
            }
 
        return maxVal;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int n = 10, a = 5, b = 3, c = 4;
       
          // Function Call
        System.out.println(maxResult(n, a, b, c));
    }
}
 
// This code is contributed by
// Surendra_Gangwar


Python3




# Python3 implementation of the approach
from math import *
 
# Function to return the maximum value
# of (x + y + z) such that (ax + by + cz = n)
 
 
def maxResult(n, a, b, c):
    maxVal = 0
 
    # i represents possible values of a * x
    for i in range(0, n + 1, a):
 
        # j represents possible values of b * y
        for j in range(0, n - i + 1, b):
            z = (n - (i + j)) / c
 
            # If z is an integer
            if (floor(z) == ceil(z)):
                x = i // a
                y = j // b
                maxVal = max(maxVal, x + y + int(z))
 
    return maxVal
 
 
# Driver code
if __name__ == "__main__":
 
    n = 10
    a = 5
    b = 3
    c = 4
 
    # Function Call
    print(maxResult(n, a, b, c))
 
# This code is contributed by Ryuga


C#




// C# implementation of the approach
using System;
 
class GFG {
 
    // Function to return the maximum value of (x + y + z)
    // such that (ax + by + cz = n)
    static int maxResult(int n, int a, int b, int c)
    {
        int maxVal = 0;
 
        // i represents possible values of a * x
        for (int i = 0; i <= n; i += a)
 
            // j represents possible values of b * y
            for (int j = 0; j <= n - i; j += b) {
                float z = (float)(n - (i + j)) / (float)c;
 
                // If z is an integer
                if (Math.Floor(z) == Math.Ceiling(z)) {
                    int x = i / a;
                    int y = j / b;
                    maxVal
                        = Math.Max(maxVal, x + y + (int)z);
                }
            }
        return maxVal;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int n = 10, a = 5, b = 3, c = 4;
       
          // Function Call
        Console.WriteLine(maxResult(n, a, b, c));
    }
}
 
// This code has been contributed by 29AjayKumar


PHP




<?php
// PHP implementation of the approach
 
// Function to return the maximum value of
// (x + y + z) such that (ax + by + cz = n)
function maxResult($n, $a, $b, $c)
{
    $maxVal = 0;
 
    // i represents possible values of a * x
    for ($i = 0; $i <= $n; $i += $a)
 
        // j represents possible values of b * y
        for ($j = 0; $j <= $n - $i; $j += $b)
        {
            $z = ($n - ($i + $j)) / $c;
 
            // If z is an integer
            if (floor($z) == ceil($z))
            {
                $x = (int)($i / $a);
                $y = (int)($j / $b);
                $maxVal = max($maxVal, $x + $y + (int)$z);
            }
        }
 
    return $maxVal;
}
 
// Driver code
$n = 10;
$a = 5;
$b = 3;
$c = 4;
echo maxResult($n, $a, $b, $c);
 
// This code is contributed by mits
?>


Javascript




<script>
 
// Javascript implementation of the above approach
 
    // Function to return the maximum value of (x + y + z)
    // such that (ax + by + cz = n)
    function maxResult(n, a, b, c)
    {
        let maxVal = 0;
 
        // i represents possible values of a * x
        for (let i = 0; i <= n; i += a)
 
            // j represents possible values of b * y
            for (let j = 0; j <= n - i; j += b) {
                let z = (n - (i + j)) / c;
 
                // If z is an integer
                if (Math.floor(z) == Math.ceil(z)) {
                    let x = i / a;
                    let y = j / b;
                    maxVal
                        = Math.max(maxVal, x + y + z);
                }
            }
 
        return maxVal;
    }
 
// driver program
     
    let n = 10, a = 5, b = 3, c = 4;
       
    // Function Call
    document.write(maxResult(n, a, b, c));
   
</script>


Output

3

Time Complexity: O(N2)

Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button