Maximize the value of x + y + z such that ax + by + cz = n

Given integers n, a, b and c, the task is to find the maximum value of x + y + z such that ax + by + cz = n.
Examples:
Input:
n = 10
a = 5
b = 3
c = 4
Output:
3
Explanation:
x = 0, y = 2 and z = 1Input:
n = 50
a = 8
b = 10
c = 2
Output:
25
Explanation:
x = 0, y = 0 and z = 25
Approach: Fix the values of x and y then the value of z can be calculated as z = (n – (ax + by)) / c. If current value of z is an integer then update the maximum value of x + y + z found so far.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to return the maximum value of (x + y + z)// such that (ax + by + cz = n)int maxResult(int n, int a, int b, int c){ int maxVal = 0; // i represents possible values of a * x for (int i = 0; i <= n; i += a) { // j represents possible values of b * y for (int j = 0; j <= n - i; j += b) { float z = (float)(n - (i + j)) / (float)(c); // If z is an integer if (floor(z) == ceil(z)) { int x = i / a; int y = j / b; maxVal = max(maxVal, x + y + (int)z); } } } return maxVal;}// Driver codeint main(){ int n = 10, a = 5, b = 3, c = 4; // Function Call cout << maxResult(n, a, b, c); return 0;} |
Java
// Java implementation of the approachimport java.util.*;class GFG { // Function to return the maximum value of (x + y + z) // such that (ax + by + cz = n) static int maxResult(int n, int a, int b, int c) { int maxVal = 0; // i represents possible values of a * x for (int i = 0; i <= n; i += a) // j represents possible values of b * y for (int j = 0; j <= n - i; j += b) { float z = (float)(n - (i + j)) / (float)c; // If z is an integer if (Math.floor(z) == Math.ceil(z)) { int x = i / a; int y = j / b; maxVal = Math.max(maxVal, x + y + (int)z); } } return maxVal; } // Driver code public static void main(String args[]) { int n = 10, a = 5, b = 3, c = 4; // Function Call System.out.println(maxResult(n, a, b, c)); }}// This code is contributed by// Surendra_Gangwar |
Python3
# Python3 implementation of the approachfrom math import *# Function to return the maximum value# of (x + y + z) such that (ax + by + cz = n)def maxResult(n, a, b, c): maxVal = 0 # i represents possible values of a * x for i in range(0, n + 1, a): # j represents possible values of b * y for j in range(0, n - i + 1, b): z = (n - (i + j)) / c # If z is an integer if (floor(z) == ceil(z)): x = i // a y = j // b maxVal = max(maxVal, x + y + int(z)) return maxVal# Driver codeif __name__ == "__main__": n = 10 a = 5 b = 3 c = 4 # Function Call print(maxResult(n, a, b, c))# This code is contributed by Ryuga |
C#
// C# implementation of the approachusing System;class GFG { // Function to return the maximum value of (x + y + z) // such that (ax + by + cz = n) static int maxResult(int n, int a, int b, int c) { int maxVal = 0; // i represents possible values of a * x for (int i = 0; i <= n; i += a) // j represents possible values of b * y for (int j = 0; j <= n - i; j += b) { float z = (float)(n - (i + j)) / (float)c; // If z is an integer if (Math.Floor(z) == Math.Ceiling(z)) { int x = i / a; int y = j / b; maxVal = Math.Max(maxVal, x + y + (int)z); } } return maxVal; } // Driver code public static void Main(String[] args) { int n = 10, a = 5, b = 3, c = 4; // Function Call Console.WriteLine(maxResult(n, a, b, c)); }}// This code has been contributed by 29AjayKumar |
PHP
<?php// PHP implementation of the approach// Function to return the maximum value of // (x + y + z) such that (ax + by + cz = n)function maxResult($n, $a, $b, $c){ $maxVal = 0; // i represents possible values of a * x for ($i = 0; $i <= $n; $i += $a) // j represents possible values of b * y for ($j = 0; $j <= $n - $i; $j += $b) { $z = ($n - ($i + $j)) / $c; // If z is an integer if (floor($z) == ceil($z)) { $x = (int)($i / $a); $y = (int)($j / $b); $maxVal = max($maxVal, $x + $y + (int)$z); } } return $maxVal;}// Driver code$n = 10;$a = 5;$b = 3;$c = 4;echo maxResult($n, $a, $b, $c);// This code is contributed by mits?> |
Javascript
<script>// Javascript implementation of the above approach // Function to return the maximum value of (x + y + z) // such that (ax + by + cz = n) function maxResult(n, a, b, c) { let maxVal = 0; // i represents possible values of a * x for (let i = 0; i <= n; i += a) // j represents possible values of b * y for (let j = 0; j <= n - i; j += b) { let z = (n - (i + j)) / c; // If z is an integer if (Math.floor(z) == Math.ceil(z)) { let x = i / a; let y = j / b; maxVal = Math.max(maxVal, x + y + z); } } return maxVal; }// driver program let n = 10, a = 5, b = 3, c = 4; // Function Call document.write(maxResult(n, a, b, c)); </script> |
Output
3
Time Complexity: O(N2)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



