Given an array, arr[] find the maximum value of (arr[i] – i) – (arr[j] – j) where i is not equal to j. Where i and j vary from 0 to n-1 and n is size of input array arr[].
Examples:
Input : arr[] = {9, 15, 4, 12, 13}
Output : 12
We get the maximum value for i = 1 and j = 2
(15 - 1) - (4 - 2) = 12
Input : arr[] = {-1, -2, -3, 4, 10}
Output : 6
We get the maximum value for i = 4 and j = 2
(10 - 4) - (-3 - 2) = 11
One important observation is, value of (arr[i] – i) – (arr[j] – j) can never be negative. We can always swap i and j to convert a negative value into a positive. So the condition i not equal to j is bogus and doesn’t require an explicit check.
Method 1 (Naive : O(n2)): The idea is to run two loops to consider all possible pairs and keep track of maximum value of expression (arr[i]-i)-(arr[j]-j). Below is the implementation of this idea.
Implementation:
C++
#include<bits/stdc++.h>
using namespace std;
int findMaxDiff(int arr[], int n)
{
if (n < 2)
{
cout << "Invalid ";
return 0;
}
int res = INT_MIN;
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
if ( res < (arr[i]-arr[j]-i+j) )
res = (arr[i]-arr[j]-i+j);
return res;
}
int main()
{
int arr[] = {9, 15, 4, 12, 13};
int n = sizeof(arr)/sizeof(arr[0]);
cout << findMaxDiff(arr, n);
return 0;
}
|
Java
import java.util.*;
class GFG {
static int findMaxDiff(int arr[], int n)
{
if (n < 2) {
System.out.print("Invalid ");
return 0;
}
int res = Integer.MIN_VALUE;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
if (res < (arr[i] - arr[j] - i + j))
res = (arr[i] - arr[j] - i + j);
return res;
}
public static void main(String[] args)
{
int arr[] = {9, 15, 4, 12, 13};
int n = arr.length;
System.out.print(findMaxDiff(arr, n));
}
}
|
Python3
def findMaxDiff(arr,n):
if (n < 2):
print("Invalid ")
return 0
res = -2147483648
for i in range(n):
for j in range(n):
if ( res < (arr[i]-arr[j]-i+j) ):
res = (arr[i]-arr[j]-i+j)
return res
arr= [9, 15, 4, 12, 13]
n = len(arr)
print(findMaxDiff(arr, n))
|
C#
using System;
class GFG {
static int findMaxDiff(int []arr, int n)
{
if (n < 2) {
Console.WriteLine("Invalid ");
return 0;
}
int res = int.MinValue;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
if (res < (arr[i] - arr[j] - i + j))
res = (arr[i] - arr[j] - i + j);
return res;
}
public static void Main()
{
int []arr = {9, 15, 4, 12, 13};
int n = arr.Length;
Console.WriteLine(findMaxDiff(arr, n));
}
}
|
PHP
<?php
function findMaxDiff( $arr, $n)
{
if ($n < 2)
{
echo "Invalid ";
return 0;
}
$res = PHP_INT_MIN;
for($i = 0; $i < $n; $i++)
for($j = 0; $j < $n; $j++)
if($res < ($arr[$i] - $arr[$j] - $i + $j))
$res = ($arr[$i] - $arr[$j] - $i + $j);
return $res;
}
$arr = array(9, 15, 4, 12, 13);
$n = count($arr);
echo findMaxDiff($arr, $n);
?>
|
Javascript
<script>
function findMaxDiff(arr, n)
{
if (n < 2) {
document.write("Invalid ");
return 0;
}
let res = Number.MIN_VALUE;
for (let i = 0; i < n; i++)
for (let j = 0; j < n; j++)
if (res < (arr[i] - arr[j] - i + j))
res = (arr[i] - arr[j] - i + j);
return res;
}
let arr = [9, 15, 4, 12, 13];
let n = arr.length;
document.write(findMaxDiff(arr, n));
</script>
|
Auxiliary Space: O(1), since no extra space used.
Method 2 (Tricky : O(n)):
- Find maximum value of arr[i] – i in whole array.
- Find minimum value of arr[i] – i in whole array.
- Return difference of above two values. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Implementation:
C++
#include<bits/stdc++.h>
using namespace std;
int findMaxDiff(int a[], int n)
{
if (n < 2)
{
cout << "Invalid ";
return 0;
}
int min_val = INT_MAX, max_val =
INT_MIN;
for (int i=0; i<n; i++)
{
if ((a[i]-i) > max_val)
max_val = a[i] - i;
if ((a[i]-i) < min_val)
min_val = a[i]-i;
}
return (max_val - min_val);
}
int main()
{
int arr[] = {9, 15, 4, 12, 13};
int n = sizeof(arr)/sizeof(arr[0]);
cout << findMaxDiff(arr, n);
return 0;
}
|
Java
import java.io.*;
class GFG {
static int findMaxDiff(int arr[], int n)
{
if (n < 2)
{
System.out.println("Invalid ");
return 0;
}
int min_val = Integer.MAX_VALUE,
max_val = Integer.MIN_VALUE;
for (int i = 0; i < n; i++)
{
if ((arr[i]-i) > max_val)
max_val = arr[i] - i;
if ((arr[i]-i) < min_val)
min_val = arr[i]-i;
}
return (max_val - min_val);
}
public static void main(String[] args)
{
int arr[] = {9, 15, 4, 12, 13};
int n = arr.length;
System.out.println(findMaxDiff(arr, n));
}
}
|
Python3
import sys
def findMaxDiff(a, n):
if (n < 2):
print("Invalid ")
return 0
min_val = sys.maxsize
max_val = -sys.maxsize - 1
for i in range(n):
if ((a[i] - i) > max_val):
max_val = a[i] - i
if ((a[i] - i) < min_val):
min_val = a[i] - i
return (max_val - min_val)
if __name__ == '__main__':
arr = [9, 15, 4, 12, 13]
n = len(arr)
print(findMaxDiff(arr, n))
|
C#
using System;
class GFG {
static int findMaxDiff(int []arr, int n)
{
if (n < 2)
{
Console.Write("Invalid ");
return 0;
}
int min_val = int.MaxValue,
max_val = int.MinValue;
for (int i = 0; i < n; i++)
{
if ((arr[i] - i) > max_val)
max_val = arr[i] - i;
if ((arr[i] - i) < min_val)
min_val = arr[i] - i;
}
return (max_val - min_val);
}
public static void Main()
{
int []arr = {9, 15, 4, 12, 13};
int n = arr.Length;
Console.Write(findMaxDiff(arr, n));
}
}
|
PHP
<?php
function findMaxDiff($a, $n)
{
if ($n < 2)
{
echo "Invalid ";
return 0;
}
$min_val = PHP_INT_MAX;
$max_val = PHP_INT_MIN;
for ($i = 0; $i < $n; $i++)
{
if (($a[$i] - $i) > $max_val)
$max_val = $a[$i] - $i;
if (($a[$i] - $i) < $min_val)
$min_val = $a[$i] - $i;
}
return ($max_val - $min_val);
}
$arr = array(9, 15, 4, 12, 13);
$n = sizeof($arr);
echo findMaxDiff($arr, $n);
?>
|
Javascript
<script>
function findMaxDiff(arr, n)
{
if (n < 2)
{
document.write("Invalid ");
return 0;
}
let min_val =
Number.MAX_VALUE, max_val = Number.MIN_VALUE;
for (let i = 0; i < n; i++)
{
if ((arr[i] - i) > max_val)
max_val = arr[i] - i;
if ((arr[i] - i) < min_val)
min_val = arr[i] - i;
}
return (max_val - min_val);
}
let arr = [9, 15, 4, 12, 13];
let n = arr.length;
document.write(findMaxDiff(arr, n));
</script>
|
Auxiliary Space: O(1), since no extra space used.
This article is contributed by Shivam Agrawal. If you like zambiatek and would like to contribute, you can also write an article using write.zambiatek.com or mail your article to review-team@zambiatek.com. See your article appearing on the zambiatek main page and help other Geeks.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!