Maximum length of the sub-array whose first and last elements are same

Given a character array arr[] containing only lowercase English alphabets, the task is to print the maximum length of the subarray such that the first and the last element of the sub-array are same.
Examples: 
 

Input: arr[] = {‘g’, ‘e’, ‘e’, ‘k’, ‘s’} 
Output: 2 
{‘e’, ‘e’} is the maximum length sub-array satisfying the given condition.
Input: arr[] = {‘a’, ‘b’, ‘c’, ‘d’, ‘a’} 
Output: 5 
{‘a’, ‘b’, ‘c’, ‘d’, ‘a’} is the required sub-array 
 

 

Approach: For every element of the array ch, store it’s first and last occurrence. Then the maximum length of the sub-array that starts and ends with the same element ch will be lastOccurrence(ch) – firstOccurrence(ch) + 1. The maximum of this value among all the elements is the required answer.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Class that represents a single element
// of the given array and stores it's first
// and the last occurrence in the array
class Element
{
public:
    int firstOcc, lastOcc;
    Element();
    void updateOccurence(int);
};
 
Element::Element()
{
    firstOcc = lastOcc = -1;
}
 
// Function to update the occurrence
// of a particular character in the array
void Element::updateOccurence(int index)
{
    // If first occurrence is set to something
    // other than -1 then it doesn't need updating
    if (firstOcc == -1)
        firstOcc = index;
 
    // Last occurrence will be updated everytime
    // the character appears in the array
    lastOcc = index;
}
 
// Function to return the maximum length of the
// sub-array that starts and ends with the same element
int maxLenSubArr(string arr, int n)
{
    Element elements[26];
 
    for (int i = 0; i < n; i++)
    {
        int ch = arr[i] - 'a';
 
        // Update current character's occurrence
        elements[ch].updateOccurence(i);
    }
 
    int maxLen = 0;
    for (int i = 0; i < 26; i++)
    {
        // Length of the longest sub-array that starts
        // and ends with the same element
        int len = elements[i].lastOcc -
                  elements[i].firstOcc + 1;
        maxLen = max(maxLen, len);
    }
 
    // Return the maximum length of
    // the required sub-array
    return maxLen;
}
 
// Driver Code
int main()
{
    string arr = "zambiatek";
    int n = arr.length();
 
    cout << maxLenSubArr(arr, n) << endl;
 
    return 0;
}
 
// This code is contributed by
// sanjeev2552


Java




// Java implementation of the approach
 
// Class that represents a single element
// of the given array and stores it's first
// and the last occurrence in the array
class Element {
    int firstOcc, lastOcc;
 
    public Element()
    {
        firstOcc = lastOcc = -1;
    }
 
    // Function to update the occurrence
    // of a particular character in the array
    public void updateOccurrence(int index)
    {
 
        // If first occurrence is set to something
        // other than -1 then it doesn't need updating
        if (firstOcc == -1)
            firstOcc = index;
 
        // Last occurrence will be updated everytime
        // the character appears in the array
        lastOcc = index;
    }
}
 
class GFG {
 
    // Function to return the maximum length of the
    // sub-array that starts and ends with the same element
    public static int maxLenSubArr(char arr[], int n)
    {
 
        Element elements[] = new Element[26];
        for (int i = 0; i < n; i++) {
            int ch = arr[i] - 'a';
 
            // Initialize the current character
            // if haven't already
            if (elements[ch] == null)
                elements[ch] = new Element();
 
            // Update current character's occurrence
            elements[ch].updateOccurrence(i);
        }
 
        int maxLen = 0;
        for (int i = 0; i < 26; i++) {
 
            // If current character appears in the given array
            if (elements[i] != null) {
 
                // Length of the longest sub-array that starts
                // and ends with the same element
                int len = elements[i].lastOcc - elements[i].firstOcc + 1;
                maxLen = Math.max(maxLen, len);
            }
        }
 
        // Return the maximum length of
        // the required sub-array
        return maxLen;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        char arr[] = { 'g', 'e', 'e', 'k', 's' };
        int n = arr.length;
 
        System.out.print(maxLenSubArr(arr, n));
    }
}


Python3




# Python3 implementation of the approach
 
# Class that represents a single element
# of the given array and stores it's first
# and the last occurrence in the array
class Element:
     
    def __init__(self):
        self.firstOcc = -1
        self.lastOcc = -1
 
    # Function to update the occurrence
    # of a particular character in the array
    def updateOccurrence(self, index):
 
        # If first occurrence is set to
        # something other than -1 then it
        # doesn't need updating
        if self.firstOcc == -1:
            self.firstOcc = index
 
        # Last occurrence will be updated
        # everytime the character appears
        # in the array
        self.lastOcc = index
 
# Function to return the maximum length
# of the sub-array that starts and ends
# with the same element
def maxLenSubArr(arr, n):
 
    elements = [None] * 26
    for i in range(0, n):
        ch = ord(arr[i]) - ord('a')
 
        # Initialize the current character
        # if haven't already
        if elements[ch] == None:
            elements[ch] = Element()
 
        # Update current character's occurrence
        elements[ch].updateOccurrence(i)
         
    maxLen = 0
    for i in range(0, 26):
 
        # If current character appears in
        # the given array
        if elements[i] != None:
 
            # Length of the longest sub-array that
            # starts and ends with the same element
            length = (elements[i].lastOcc -
                      elements[i].firstOcc + 1)
            maxLen = max(maxLen, length)
             
    # Return the maximum length of
    # the required sub-array
    return maxLen
     
# Driver code
if __name__ == "__main__":
     
    arr = ['g', 'e', 'e', 'k', 's']
    n = len(arr)
 
    print(maxLenSubArr(arr, n))
     
# This code is contributed by Rituraj Jain


C#




// C# implementation of the above approach
using System;
 
// Class that represents a single element
// of the given array and stores it's first
// and the last occurrence in the array
public class Element
{
     
    public int firstOcc, lastOcc;
 
    public Element()
    {
        firstOcc = lastOcc = -1;
    }
 
    // Function to update the occurrence
    // of a particular character in the array
    public void updateOccurrence(int index)
    {
 
        // If first occurrence is set to something
        // other than -1 then it doesn't need updating
        if (firstOcc == -1)
            firstOcc = index;
 
        // Last occurrence will be updated everytime
        // the character appears in the array
        lastOcc = index;
    }
}
 
class GFG
{
 
    // Function to return the maximum
    // length of the sub-array that
    //  starts and ends with the same element
    public static int maxLenSubArr(char []arr, int n)
    {
 
        Element []elements = new Element[26];
        for (int i = 0; i < n; i++)
        {
            int ch = arr[i] - 'a';
 
            // Initialize the current character
            // if haven't already
            if (elements[ch] == null)
                elements[ch] = new Element();
 
            // Update current character's occurrence
            elements[ch].updateOccurrence(i);
        }
 
        int maxLen = 0;
        for (int i = 0; i < 26; i++)
        {
 
            // If current character appears
            // in the given array
            if (elements[i] != null)
            {
 
                // Length of the longest sub-array that starts
                // and ends with the same element
                int len = elements[i].lastOcc - elements[i].firstOcc + 1;
                maxLen = Math.Max(maxLen, len);
            }
        }
 
        // Return the maximum length of
        // the required sub-array
        return maxLen;
    }
 
    // Driver code
    public static void Main()
    {
        char []arr = { 'g', 'e', 'e', 'k', 's' };
        int n = arr.Length;
 
        Console.WriteLine(maxLenSubArr(arr, n));
    }
}
 
// This code is contributed by Ryuga


Javascript




<script>
 
// Javascript implementation of the approach
 
//Class that represents a single element
//of the given array and stores it's first
//and the last occurrence in the array
class Element
{   
    constructor()
    {
        this.firstOcc = -1;
        this.lastOcc = -1;
    }
 
    // Function to update the occurrence
    //of a particular character in the array
    updateOccurrence(index){
 
        // If first occurrence is set to
        //something other than -1 then it
        //doesn't need updating
        if (this.firstOcc == -1)
            this.firstOcc = index;
 
        // Last occurrence will be updated
        // everytime the character appears
        // in the array
        this.lastOcc = index;
     
    }
}
    // Function to return the maximum length
// of the sub-array that starts and ends
// with the same element
function maxLenSubArr(arr, n)
{
   let elements = new Array(26);
    
   for(let i=0;i<26;i++)
   {
       elements[i] = new Element();
   }
 
    for(let i=0;i<n;i++)
       {
           let ch = arr[i].charCodeAt(0) - 'a'.charCodeAt(0);
 
        // Update current character's occurrence
        elements[ch].updateOccurrence(i);
        }
    let maxLen = 0;
    for(let i=0;i<26;i++)
    {
        // Length of the longest sub-array that starts
        // and ends with the same element
        let len = elements[i].lastOcc -
                  elements[i].firstOcc + 1;
        maxLen = Math.max(maxLen, len);
     
    }
    // Return the maximum length of
    // the required sub-array
    return maxLen;
}
// Driver code
 
let arr = "zambiatek";
let n = arr.length;
 
console.log(maxLenSubArr(arr, n));
 
// This code is contributed by akashish__
 
</script>


Output: 

2

 

Time Complexity: O(N) 
Auxiliary Space: O(N)

Related Topic: Subarrays, Subsequences, and Subsets in Array

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button