Maximum occurred integer in n ranges | Set-2

Given N ranges of L-R. The task is to print the number which occurs the maximum number of times in the given ranges. 

Note: 1 <= L <= R <= 106

Examples: 

Input: range[] = { {1, 6}, {2, 3}, {2, 5}, {3, 8} } 
Output:
1 occurs in 1 range {1, 6} 
2 occurs 3 in 3 range {1, 6}, {2, 3}, {2, 5} 
3 occurs 4 in 4 range {1, 6}, {2, 3}, {2, 5}, {3, 8} 
4 occurs 3 in 3 range {1, 6}, {2, 5}, {3, 8} 
5 occurs 3 in 3 range {1, 6}, {2, 5}, {3, 8} 
6 occurs 2 in 2 range {1, 6}, {3, 8} 
7 occurs 1 in 1 range {3, 8} 
8 occurs 1 in 1 range {3, 8}

Input: range[] = { {1, 4}, {1, 9}, {1, 2}}; 
Output: 1

Approach: The approach is similar to Maximum occurred integer in n ranges. The only thing that is different is to find the lower and upper bound of ranges. So that there is no need to traverse from 1 to MAX.

Below is the step by step algorithm to solve this problem: 

  1. Initialize a freq array with 0, let the size of the array be 10^6 as this is the maximum possible.
  2. Increase the freq[l] by 1, for every starting index of the given range.
  3. Decrease the freq[r+1] by 1 for every ending index of the given range.
  4. Iterate from the minimum L to the maximum R and add the frequencies by freq[i] += freq[i-1].
  5. The index with the maximum value of freq[i] will be the answer.
  6. Store the index and return it.

Implementation:

C++




// C++ program to check the most occurring
// element in given range
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns the maximum element.
int maxOccurring(int range[][2], int n)
{
 
    // freq array to store the frequency
    int freq[(int)(1e6 + 2)] = { 0 };
 
    int first = 0, last = 0;
 
    // iterate and mark the hash array
    for (int i = 0; i < n; i++) {
        int l = range[i][0];
        int r = range[i][1];
 
        // increase the hash array by 1 at L
        freq[l] += 1;
 
        // Decrease the hash array by 1 at R
        freq[r + 1] -= 1;
 
        first = min(first, l);
        last = max(last, r);
    }
 
    // stores the maximum frequency
    int maximum = 0;
    int element = 0;
 
    // check for the most occurring element
    for (int i = first; i <= last; i++) {
 
        // increase the frequency
        freq[i] = freq[i - 1] + freq[i];
 
        // check if is more than the previous one
        if (freq[i] > maximum) {
            maximum = freq[i];
            element = i;
        }
    }
 
    return element;
}
 
// Driver code
int main()
{
    int range[][2] = { { 1, 6 }, { 2, 3 }, { 2, 5 }, { 3, 8 } };
    int n = 4;
 
    // function call
    cout << maxOccurring(range, n);
 
    return 0;
}


Java




// Java program to check the most occurring
// element in given range
class GFG
{
 
// Function that returns the maximum element.
static int maxOccurring(int range[][], int n)
{
 
    // freq array to store the frequency
    int []freq = new int[(int)(1e6 + 2)];
 
    int first = 0, last = 0;
 
    // iterate and mark the hash array
    for (int i = 0; i < n; i++)
    {
        int l = range[i][0];
        int r = range[i][1];
 
        // increase the hash array by 1 at L
        freq[l] += 1;
 
        // Decrease the hash array by 1 at R
        freq[r + 1] -= 1;
 
        first = Math.min(first, l);
        last = Math.max(last, r);
    }
 
    // stores the maximum frequency
    int maximum = 0;
    int element = 0;
 
    // check for the most occurring element
    for (int i = first+1; i <= last; i++)
    {
 
        // increase the frequency
        freq[i] = freq[i - 1] + freq[i];
 
        // check if is more than the previous one
        if (freq[i] > maximum)
        {
            maximum = freq[i];
            element = i;
        }
    }
    return element;
}
 
// Driver code
public static void main(String[] args)
{
    int range[][] = { { 1, 6 }, { 2, 3 },
                      { 2, 5 }, { 3, 8 } };
    int n = 4;
 
    // function call
    System.out.println(maxOccurring(range, n));
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 program to check the most
# occurring element in given range
 
# Function that returns the
# maximum element.
def maxOccurring(range1, n):
     
    # freq array to store the frequency
    freq = [0] * 1000002;
     
    first = 0;
    last = 0;
     
    # iterate and mark the hash array
    for i in range(n):
        l = range1[i][0];
        r = range1[i][1];
         
        # increase the hash array by 1 at L
        freq[l] += 1;
         
        # Decrease the hash array by 1 at R
        freq[r + 1] -= 1;
        first = min(first, l);
        last = max(last, r);
     
    # stores the maximum frequency
    maximum = 0;
    element = 0;
     
    # check for the most occurring element
    for i in range(first, last + 1):
         
        # increase the frequency
        freq[i] = freq[i - 1] + freq[i];
         
        # check if is more than the
        # previous one
        if(freq[i] > maximum):
            maximum = freq[i];
            element = i;
    return element;
 
# Driver code
range1= [[ 1, 6 ], [ 2, 3 ],
         [ 2, 5 ], [ 3, 8 ]];
n = 4;
     
# function call
print(maxOccurring(range1, n));
 
# This code is contributed by mits


C#




// C# program to check the most occurring
// element in given range
using System;
     
class GFG
{
 
// Function that returns the maximum element.
static int maxOccurring(int [,]range, int n)
{
 
    // freq array to store the frequency
    int []freq = new int[(int)(1e6 + 2)];
 
    int first = 0, last = 0;
 
    // iterate and mark the hash array
    for (int i = 0; i < n; i++)
    {
        int l = range[i, 0];
        int r = range[i, 1];
 
        // increase the hash array by 1 at L
        freq[l] += 1;
 
        // Decrease the hash array by 1 at R
        freq[r + 1] -= 1;
 
        first = Math.Min(first, l);
        last = Math.Max(last, r);
    }
 
    // stores the maximum frequency
    int maximum = 0;
    int element = 0;
 
    // check for the most occurring element
    for (int i = first + 1; i <= last; i++)
    {
 
        // increase the frequency
        freq[i] = freq[i - 1] + freq[i];
 
        // check if is more than the previous one
        if (freq[i] > maximum)
        {
            maximum = freq[i];
            element = i;
        }
    }
    return element;
}
 
// Driver code
public static void Main(String[] args)
{
    int [,]range = {{ 1, 6 }, { 2, 3 },
                    { 2, 5 }, { 3, 8 }};
    int n = 4;
 
    // function call
    Console.WriteLine(maxOccurring(range, n));
}
}
 
// This code is contributed by Princi Singh


PHP




<?php
// PHP program to check the most occurring
// element in given range
 
// Function that returns the maximum element.
function maxOccurring(&$range, $n)
{
    // freq array to store the frequency
    $freq = array(0, 1000002, NULL);
 
    $first = 0;
    $last = 0;
 
    // iterate and mark the hash array
    for ($i = 0; $i < $n; $i++)
    {
        $l = $range[$i][0];
        $r = $range[$i][1];
 
        // increase the hash array
        // by 1 at L
        $freq[$l] += 1;
 
        // Decrease the hash array
        // by 1 at R
        $freq[$r + 1] -= 1;
 
        $first = min($first, $l);
        $last = max($last, $r);
    }
 
    // stores the maximum frequency
    $maximum = 0;
    $element = 0;
 
    // check for the most occurring element
    for ($i = $first; $i <= $last; $i++)
    {
 
        // increase the frequency
        $freq[$i] = $freq[$i - 1] + $freq[$i];
 
        // check if is more than the
        // previous one
        if ($freq[$i] > $maximum)
        {
            $maximum = $freq[$i];
            $element = $i;
        }
    }
 
    return $element;
}
 
// Driver code
$range = array(array( 1, 6 ),
               array( 2, 3 ),
               array( 2, 5 ),
               array( 3, 8 ));
$n = 4;
 
// function call
echo maxOccurring($range, $n);
 
// This code is contributed by ita_c
?>


Javascript




<script>
 
// Javascript program to check the most occurring
// element in given range   
 
// Function that returns the maximum element.
    function maxOccurring(range , n)
    {
 
        // freq array to store the frequency
        var freq = Array(parseInt(1e6 + 2)).fill(0);
 
        var first = 0, last = 0;
 
        // iterate and mark the hash array
        for (i = 0; i < n; i++) {
            var l = range[i][0];
            var r = range[i][1];
 
            // increase the hash array by 1 at L
            freq[l] += 1;
 
            // Decrease the hash array by 1 at R
            freq[r + 1] -= 1;
 
            first = Math.min(first, l);
            last = Math.max(last, r);
        }
 
        // stores the maximum frequency
        var maximum = 0;
        var element = 0;
 
        // check for the most occurring element
        for (i = first + 1; i <= last; i++) {
 
            // increase the frequency
            freq[i] = freq[i - 1] + freq[i];
 
            // check if is more than the previous one
            if (freq[i] > maximum) {
                maximum = freq[i];
                element = i;
            }
        }
        return element;
    }
 
    // Driver code
     
        var range = [ [ 1, 6 ], [ 2, 3 ],
                      [ 2, 5 ], [ 3, 8 ] ];
        var n = 4;
 
        // function call
        document.write(maxOccurring(range, n));
 
// This code contributed by gauravrajput1
 
</script>


Output

3

Complexity Analysis:

  • Time Complexity: O(N + M), where M is the maximum value among the ranges.
  • Auxiliary Space: O(106), as we are using extra space for freq array.

Note: If values the values of L and T are of order 108 then above method won’t work as there will be a memory error. We need a different but similar approach for these limits. You may think in terms of hashing.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button