Minimum number of given moves required to make N divisible by 25

Given a number N(1 ? N ? 1018) without leading zeros. The task is to find the minimum number of moves required to make N divisible by 25. At each move, one can swap any two adjacent digits and make sure that at any time number must not contain any leading zeros. If it is not possible to make N divisible by 25 then print -1.
Examples:Â
Â
Input: N = 7560Â
Output: 1Â
swap(5, 6) and N becomes 7650 which is divisible by 25
Input: N = 100Â
Output: 0Â
Â
Â
Approach: Iterate over all pairs of digits in the number. Let the first digit in the pair is at position i and the second is at position j. Let’s place these digits to the last two positions in the number. But, now the number can contain a leading zero. Find the leftmost non-zero digit and move it to the first position. Then if the current number is divisible by 25 try to update the answer with the number of swaps. The minimum number of swaps across all of these operations is the required answer.
Below is the implementation of the above approach:Â
Â
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;Â
// Function to return the minimum number // of moves required to make n divisible // by 25int minMoves(long long n){Â
    // Convert number into string    string s = to_string(n);Â
    // To store required answer    int ans = INT_MAX;Â
    // Length of the string    int len = s.size();Â
    // To check all possible pairs    for (int i = 0; i < len; ++i) {        for (int j = 0; j < len; ++j) {            if (i == j)                continue;Â
            // Make a duplicate string            string t = s;            int cur = 0;Â
            // Number of swaps required to place            // ith digit in last position            for (int k = i; k < len - 1; ++k) {                swap(t[k], t[k + 1]);                ++cur;            }Â
            // Number of swaps required to place            // jth digit in 2nd last position            for (int k = j - (j > i); k < len - 2; ++k) {                swap(t[k], t[k + 1]);                ++cur;            }Â
            // Find first non zero digit            int pos = -1;            for (int k = 0; k < len; ++k) {                if (t[k] != '0') {                    pos = k;                    break;                }            }Â
            // Place first non zero digit            // in the first position            for (int k = pos; k > 0; --k) {                swap(t[k], t[k - 1]);                ++cur;            }Â
            // Convert string to number            long long nn = atoll(t.c_str());Â
            // If this number is divisible by 25            // then cur is one of the possible answer            if (nn % 25 == 0)                ans = min(ans, cur);        }    }Â
    // If not possible    if (ans == INT_MAX)        return -1;Â
    return ans;}Â
// Driver codeint main(){Â Â Â Â long long n = 509201;Â Â Â Â cout << minMoves(n);Â Â Â Â return 0;} |
Java
// Java implementation of the approachimport java.io.*;class GFG{         // Function to return the minimum number     // of moves required to make n divisible     // by 25    static int minMoves(int n)    {             // Convert number into string        String s = Integer.toString(n);                 // To store required answer        int ans = Integer.MAX_VALUE;             // Length of the string        int len = s.length();             // To check all possible pairs        for (int i = 0; i < len; ++i)         {            for (int j = 0; j < len; ++j)             {                if (i == j)                    continue;                     // Make a duplicate string                char t [] = s.toCharArray();                int cur = 0;                     // Number of swaps required to place                // ith digit in last position                for (int k = i; k < len - 1; ++k)                 {                    swap(t, k, k + 1);                    ++cur;                }                     // Number of swaps required to place                // jth digit in 2nd last position                for (int k = j - ((j > i)? 1 : 0 ); k < len - 2; ++k)                 {                    swap(t, k, k + 1);                    ++cur;                }                     // Find first non zero digit                int pos = -1;                for (int k = 0; k < len; ++k)                {                    if (t[k] != '0')                     {                        pos = k;                        break;                    }                }                     // Place first non zero digit                // in the first position                for (int k = pos; k > 0; --k)                 {                    swap(t, k, k - 1);                    ++cur;                }                     // Convert string to number                long nn = Integer.parseInt(String.valueOf(t));                     // If this number is divisible by 25                // then cur is one of the possible answer                if (nn % 25 == 0)                    ans = Math.min(ans, cur);            }        }             // If not possible        if (ans == Integer.MAX_VALUE)            return -1;             return ans;    }         static void swap(char t [], int i, int j)     {         char temp = t[i];         t[i] = t[j];         t[j] = temp;     }         // Driver code    public static void main (String[] args)    {        int n = 509201;        System.out.println(minMoves(n));    }}Â
// This code is contributed by Archana_Kumari |
Python3
# Python3 implementation of the approachimport sysÂ
# Function to return the minimum number # of moves required to make n divisible # by 25def minMoves(n):Â
    # Convert number into string    s = str(n);Â
    # To store required answer    ans = sys.maxsize;Â
    # Length of the string    len1 = len(s);Â
    # To check all possible pairs    for i in range(len1):         for j in range(len1):             if (i == j):                continue;Â
            # Make a duplicate string            t = s;            cur = 0;Â
            # Number of swaps required to place            # ith digit in last position            list1 = list(t);            for k in range(i,len1 - 1):                e = list1[k];                list1[k] = list1[k + 1];                list1[k + 1] = e;                cur += 1;            t = ''.join(list1);Â
            # Number of swaps required to place            # jth digit in 2nd last position            list1 = list(t);            for k in range(j - (j > i),len1 - 2):                 e = list1[k];                list1[k] = list1[k + 1];                list1[k + 1] = e;                cur += 1;            t = ''.join(list1);Â
            # Find first non zero digit            pos = -1;            for k in range(len1):                 if (t[k] != '0'):                     pos = k;                    break;Â
            # Place first non zero digit            # in the first position            for k in range(pos,0,-1):                e = list1[k];                list1[k] = list1[k + 1];                list1[k + 1] = e;                cur += 1;            t = ''.join(list1);Â
Â
            # Convert string to number            nn = int(t);Â
            # If this number is divisible by 25            # then cur is one of the possible answer            if (nn % 25 == 0):                ans = min(ans, cur);Â
    # If not possible    if (ans == sys.maxsize):        return -1;Â
    return ans;Â
# Driver coden = 509201;print(minMoves(n));Â
# This code is contributed# by chandan_jnu |
C#
// C# implementation of the approachusing System;Â
class GFG{         // Function to return the minimum number     // of moves required to make n divisible     // by 25    static int minMoves(int n)    {             // Convert number into string        string s = n.ToString();                 // To store required answer        int ans = Int32.MaxValue;             // Length of the string        int len = s.Length;             // To check all possible pairs        for (int i = 0; i < len; ++i)         {            for (int j = 0; j < len; ++j)             {                if (i == j)                    continue;                     // Make a duplicate string                char[] t = s.ToCharArray();                int cur = 0;                     // Number of swaps required to place                // ith digit in last position                for (int k = i; k < len - 1; ++k)                 {                    swap(t, k, k + 1);                    ++cur;                }                     // Number of swaps required to place                // jth digit in 2nd last position                for (int k = j - ((j > i)? 1 : 0 ); k < len - 2; ++k)                 {                    swap(t, k, k + 1);                    ++cur;                }                     // Find first non zero digit                int pos = -1;                for (int k = 0; k < len; ++k)                {                    if (t[k] != '0')                     {                        pos = k;                        break;                    }                }                     // Place first non zero digit                // in the first position                for (int k = pos; k > 0; --k)                 {                    swap(t, k, k - 1);                    ++cur;                }                     // Convert string to number                int nn = Convert.ToInt32(new String(t));                     // If this number is divisible by 25                // then cur is one of the possible answer                if (nn % 25 == 0)                    ans = Math.Min(ans, cur);            }        }             // If not possible        if (ans == Int32.MaxValue)            return -1;             return ans;    }         static void swap(char []t, int i, int j)     {         char temp = t[i];         t[i] = t[j];         t[j] = temp;     }         // Driver code    static void Main()    {        int n = 509201;        Console.WriteLine(minMoves(n));    }}Â
// This code is contributed by mits |
PHP
<?php// PHP implementation of the approachÂ
// Function to return the minimum number // of moves required to make n divisible // by 25function minMoves($n){Â
    // Convert number into string    $s = strval($n);Â
    // To store required answer    $ans = PHP_INT_MAX;Â
    // Length of the string    $len = strlen($s);Â
    // To check all possible pairs    for ($i = 0; $i < $len; ++$i)     {        for ($j = 0; $j < $len; ++$j)         {            if ($i == $j)                continue;Â
            // Make a duplicate string            $t = $s;            $cur = 0;Â
            // Number of swaps required to place            // ith digit in last position            for ($k = $i;$k < $len - 1; ++$k)             {                $e=$t[$k];                $t[$k]=$t[$k + 1];                $t[$k+1]=$e;                ++$cur;            }Â
            // Number of swaps required to place            // jth digit in 2nd last position            for ($k = $j - ($j > $i);                  $k < $len - 2; ++$k)             {                $e = $t[$k];                $t[$k] = $t[$k + 1];                $t[$k + 1] = $e;                ++$cur;            }Â
            // Find first non zero digit            $pos = -1;            for ($k = 0; $k < $len; ++$k)             {                if ($t[$k] != '0')                 {                    $pos = $k;                    break;                }            }Â
            // Place first non zero digit            // in the first position            for ($k = $pos; $k > 0; --$k)             {                $e = $t[$k];                $t[$k] = $t[$k + 1];                $t[$k + 1] = $e;                ++$cur;            }Â
            // Convert string to number            $nn = intval($t);Â
            // If this number is divisible by 25            // then cur is one of the possible answer            if ($nn % 25 == 0)                $ans = min($ans, $cur);        }    }Â
    // If not possible    if ($ans == PHP_INT_MAX)        return -1;Â
    return $ans;}Â
// Driver code$n = 509201;echo minMoves($n);Â
// This code is contributed// by chandan_jnu?> |
Javascript
<script>    // Javascript implementation of the approach         // Function to return the minimum number     // of moves required to make n divisible     // by 25    function minMoves(n)    {               // Convert number into string        let s = n.toString();                   // To store required answer        let ans = Number.MAX_VALUE;               // Length of the string        let len = s.length;               // To check all possible pairs        for (let i = 0; i < len; ++i)         {            for (let j = 0; j < len; ++j)             {                if (i == j)                    continue;                       // Make a duplicate string                let t = s.split('');                let cur = 0;                       // Number of swaps required to place                // ith digit in last position                for (let k = i; k < len - 1; ++k)                 {                    swap(t, k, k + 1);                    ++cur;                }                       // Number of swaps required to place                // jth digit in 2nd last position                for (let k = j - ((j > i)? 1 : 0 ); k < len - 2; ++k)                 {                    swap(t, k, k + 1);                    ++cur;                }                       // Find first non zero digit                let pos = -1;                for (let k = 0; k < len; ++k)                {                    if (t[k] != '0')                     {                        pos = k;                        break;                    }                }                       // Place first non zero digit                // in the first position                for (let k = pos; k > 0; --k)                 {                    swap(t, k, k - 1);                    ++cur;                }                       // Convert string to number                let nn = parseInt(t.join(""));                       // If this number is divisible by 25                // then cur is one of the possible answer                if (nn % 25 == 0)                    ans = Math.min(ans, cur);            }        }               // If not possible        if (ans == Number.MAX_VALUE)            return -1;               return ans;    }           function swap(t, i, j)     {         let temp = t[i];         t[i] = t[j];         t[j] = temp;     }         let n = 509201;      document.write(minMoves(n));Â
// This code is contributed by mukesh07.</script> |
4
Â
Time Complexity: O(|n|3)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



