Minimum time required to fill given N slots

Given an integer N which denotes the number of slots, and an array arr[] consisting of K integers in the range [1, N] . Each element of the array are in the range [1, N] which represents the indices of the filled slots. At each unit of time, the index with filled slot fills the adjacent empty slots. The task is to find the minimum time taken to fill all the N slots.
Examples:
Input: N = 6, K = 2, arr[] = {2, 6}
Output: 2
Explanation:
Initially there are 6 slots and the indices of the filled slots are slots[] = {0, 2, 0, 0, 0, 6}, where 0 represents unfilled.
After 1 unit of time, slots[] = {1, 2, 3, 0, 5, 6}
After 2 units of time, slots[] = {1, 2, 3, 4, 5, 6}
Therefore, the minimum time required is 2.Input: N = 5, K = 5, arr[] = {1, 2, 3, 4, 5}
Output: 0
Minimum time required to fill given N slots using Level Order Traversal:
To solve the given problem, the idea is to perform Level Order Traversal on the given N slots using a Queue. Follow the steps below to solve the problem:
- Initialize a variable, say time as 0, and an auxiliary array visited[] to mark the filled indices in each iteration.
- Now, push the indices of filled slots given in array arr[] in a queue and mark them as visited.
- Now, iterate until the queue is not empty and perform the following steps:
- Remove the front index i from the queue and if the adjacent slots (i – 1) and (i + 1) are in the range [1, N] and are unvisited, then mark them as visited and push them into the queue.
- If any of the non visited index becomes visited in the current process Increment the time by 1 .
- After completing the above steps, print the value of (time – 1) as the minimum time required to fill all the slots.
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>Â
using namespace std;Â
// Function to return the minimum// time to fill all the slotsvoid minTime(vector<int> arr, int N, int K){         // Stores visited slots    queue<int> q;         // Checks if a slot is visited or not    vector<bool> vis(N + 1, false);Â
    int time = 0;Â
    // Insert all filled slots    for (int i = 0; i < K; i++) {Â
        q.push(arr[i]);        vis[arr[i]] = true;    }Â
    // Iterate until queue is    // not empty    while (q.size() > 0) {Â
        // Iterate through all slots        // in the queue          bool op = false;         for (int i = 0; i < q.size(); i++) {Â
            // Front index            int curr = q.front();            q.pop();Â
            // If previous slot is            // present and not visited            if (curr - 1 >= 1 &&                 !vis[curr - 1]) {                  op = true;                vis[curr - 1] = true;                q.push(curr - 1);            }Â
            // If next slot is present            // and not visited            if (curr + 1 <= N &&                 !vis[curr + 1]) {                op = true;                vis[curr + 1] = true;                q.push(curr + 1);            }        }Â
        // Increment the time        // at each level        time+=op;    }Â
    // Print the answer    cout << (time);}Â
// Driver Codeint main(){Â Â Â Â int N = 6;Â Â Â Â vector<int> arr = { 2,6 };Â Â Â Â int K = arr.size();Â
    // Function Call    minTime(arr, N, K);} |
Java
// Java program for the above approachÂ
import java.io.*;import java.util.*;class GFG {Â
    // Function to return the minimum    // time to fill all the slots    public static void minTime(int arr[],                                int N, int K)    {                 // Stores visited slots        Queue<Integer> q = new LinkedList<>();Â
        // Checks if a slot is visited or not        boolean vis[] = new boolean[N + 1];        int time = 0;Â
        // Insert all filled slots        for (int i = 0; i < K; i++) {Â
            q.add(arr[i]);            vis[arr[i]] = true;        }Â
        // Iterate until queue is        // not empty        while (q.size() > 0) {Â
            // Iterate through all slots            // in the queue            for (int i = 0; i < q.size(); i++) {Â
                // Front index                int curr = q.poll();Â
                // If previous slot is                // present and not visited                if (curr - 1 >= 1 &&                     !vis[curr - 1]) {                    vis[curr - 1] = true;                    q.add(curr - 1);                }Â
                // If next slot is present                // and not visited                if (curr + 1 <= N &&                     !vis[curr + 1]) {Â
                    vis[curr + 1] = true;                    q.add(curr + 1);                }            }Â
            // Increment the time            // at each level            time++;        }Â
        // Print the answer        System.out.println(time - 1);    }Â
    // Driver Code    public static void main(String[] args)    {        int N = 6;        int arr[] = { 2, 6 };        int K = arr.length;Â
        // Function Call        minTime(arr, N, K);    }} |
Python3
# Python3 program for the above approachÂ
# Function to return the minimum# time to fill all the slotsdef minTime(arr, N, K):         # Stores visited slots    q = []         # Checks if a slot is visited or not    vis = [False] * (N + 1)Â
    time = 0Â
    # Insert all filled slots    for i in range(K):        q.append(arr[i])        vis[arr[i]] = True             # Iterate until queue is    # not empty    while (len(q) > 0):                 # Iterate through all slots        # in the queue        for i in range(len(q)):                         # Front index            curr = q[0]            q.pop(0)Â
            # If previous slot is            # present and not visited            if (curr - 1 >= 1 and vis[curr - 1] == 0):                vis[curr - 1] = True                q.append(curr - 1)                         # If next slot is present            # and not visited            if (curr + 1 <= N and vis[curr + 1] == 0):                vis[curr + 1] = True                q.append(curr + 1)                     # Increment the time        # at each level        time += 1         # Print the answer    print(time - 1)Â
# Driver CodeN = 6arr = [ 2, 6 ]K = len(arr)Â
# Function CallminTime(arr, N, K)Â
# This code is contributed by susmitakundugoaldanga |
C#
// C# program for the above approachusing System;using System.Collections.Generic;class GFG{   // Function to return the minimum// time to fill all the slotsstatic void minTime(List<int> arr, int N, int K){         // Stores visited slots    Queue<int> q = new Queue<int>();         // Checks if a slot is visited or not    int []vis = new int[N + 1];    Array.Clear(vis, 0, vis.Length);    int time = 0;Â
    // Insert all filled slots    for (int i = 0; i < K; i++)     {        q.Enqueue(arr[i]);        vis[arr[i]] = 1;    }Â
    // Iterate until queue is    // not empty    while (q.Count > 0)     {Â
        // Iterate through all slots        // in the queue        for (int i = 0; i < q.Count; i++)         {Â
            // Front index            int curr = q.Peek();            q.Dequeue();Â
            // If previous slot is            // present and not visited            if (curr - 1 >= 1 &&                 vis[curr - 1]==0)            {                vis[curr - 1] = 1;                q.Enqueue(curr - 1);            }Â
            // If next slot is present            // and not visited            if (curr + 1 <= N &&                 vis[curr + 1] == 0)             {Â
                vis[curr + 1] = 1;                q.Enqueue(curr + 1);            }        }Â
        // Increment the time        // at each level        time++;    }Â
    // Print the answer    Console.WriteLine(time-1);}Â
// Driver Codepublic static void Main(){Â Â Â Â int N = 6;Â Â Â Â List<int> arr = new List<int>() { 2, 6 };Â Â Â Â int K = arr.Count;Â
    // Function Call    minTime(arr, N, K);}}Â
// THIS CODE IS CONTRIBUTED BY SURENDRA_GANGWAR. |
Javascript
<script>Â
// Javascript program for the above approachÂ
// Function to return the minimum// time to fill all the slotsfunction minTime(arr, N, K){         // Stores visited slots    var q = [];         // Checks if a slot is visited or not    var vis = Array(N + 1).fill(false);Â
    var time = 0;Â
    // Insert all filled slots    for (var i = 0; i < K; i++) {Â
        q.push(arr[i]);        vis[arr[i]] = true;    }Â
    // Iterate until queue is    // not empty    while (q.length > 0) {Â
        // Iterate through all slots        // in the queue        for (var i = 0; i < q.length; i++) {Â
            // Front index            var curr = q[0];            q.pop();Â
            // If previous slot is            // present and not visited            if (curr - 1 >= 1 &&                 !vis[curr - 1]) {                vis[curr - 1] = true;                q.push(curr - 1);            }Â
            // If next slot is present            // and not visited            if (curr + 1 <= N &&                 !vis[curr + 1]) {Â
                vis[curr + 1] = true;                q.push(curr + 1);            }        }Â
        // Increment the time        // at each level        time++;    }Â
    // Print the answer    document.write(time - 1);}Â
// Driver Codevar N = 6;var arr = [2, 6];var K = arr.length;Â
// Function CallminTime(arr, N, K);Â
// This code is contributed by noob2000.</script> |
Time Complexity: O(N)
Auxiliary Space: O(N)
Minimum time required to fill given N slots using Sorting:
Another approach to solve this problem can be done by sorting the array of filled slots and then iterating through the array to find the maximum distance between adjacent filled slots. The minimum time required to fill all the slots would be equal to the maximum distance between adjacent filled slots.
- Declare a function minTime() which takes three arguments: vector of integers arr, integer N, and integer K.
- Sort the vector arr[] using the sort function from STL.
- Declare an integer variable maxDist and initialize it to zero.
- Traverse the sorted array arr and find the maximum distance between adjacent slots, store this distance in the maxDist variable.
- Check the distance from the first and last slot to the closest filled slot and store the maximum of these two distances in the maxDist variable.
- Subtract 1 from maxDist to account for the time it takes to fill each slot.
- Print the value of maxDist.
Below is the implementation of this approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>Â
using namespace std;Â
// Function to return the minimum// time to fill all the slotsvoid minTime(vector<int> arr, int N, int K){    // Sort the array    sort(arr.begin(), arr.end());    int maxDist = 0;Â
    // Find maximum distance    // between adjacent slots    for (int i = 1; i < K; i++) {        maxDist = max(maxDist, arr[i] - arr[i - 1] - 1);    }    // an area is being filled with both sides it will take    // half time to fill that area    maxDist = (maxDist + 1) / 2;       // Check the distance from the    // first and last slot to the    // closest filled slotÂ
    maxDist = max(maxDist, arr[0] - 1);    maxDist = max(maxDist, N - arr[K - 1]);Â
    // Print the answer    cout << maxDist;}Â
// Driver Codeint main(){    int N = 6;    vector<int> arr = { 2, 6 };    int K = arr.size();    // Function Call    minTime(arr, N, K);} |
Java
import java.util.*;Â
public class Main {Â
    // Function to return the minimum    // time to fill all the slots    static void minTime(List<Integer> arr, int N, int K) {        // Sort the array        Collections.sort(arr);        int maxDist = 0;Â
        // Find maximum distance        // between adjacent slots        for (int i = 1; i < K; i++) {            maxDist = Math.max(maxDist, arr.get(i) - arr.get(i - 1) - 1);        }Â
        // Check the distance from the        // first and last slot to the        // closest filled slot        maxDist = Math.max(maxDist, arr.get(0) - 1);        maxDist = Math.max(maxDist, N - arr.get(K - 1));Â
        // Subtract 1 from maxDist to        // account for the time it takes        // to fill each slot        maxDist--;Â
        // Print the answer        System.out.println(maxDist);    }Â
    // Driver Code    public static void main(String[] args) {        int N = 6;        List<Integer> arr = new ArrayList<Integer>();        arr.add(2);        arr.add(6);        int K = arr.size();        // Function Call        minTime(arr, N, K);    }} |
Python
# Function to return the minimum# time to fill all the slotsdef minTime(arr, N, K):    # Sort the array    arr.sort()    maxDist = 0Â
    # Find maximum distance    # between adjacent slots    for i in range(1, K):        maxDist = max(maxDist, arr[i] - arr[i - 1] - 1)Â
    # Check the distance from the    # first and last slot to the    # closest filled slot    maxDist = max(maxDist, arr[0] - 1)    maxDist = max(maxDist, N - arr[K - 1])Â
    # Subtract 1 from maxDist to    # account for the time it takes    # to fill each slot    maxDist -= 1Â
    # Print the answer    print(maxDist)Â
# Driver Codeif __name__ == "__main__":    N = 6    arr = [2, 6]    K = len(arr)    # Function Call    minTime(arr, N, K) |
C#
using System;using System.Collections.Generic;using System.Linq;Â
public class Program{    // Function to return the minimum    // time to fill all the slots    public static void MinTime(List<int> arr, int N, int K)    {        // Sort the array        arr.Sort();        int maxDist = 0;Â
        // Find maximum distance        // between adjacent slots        for (int i = 1; i < K; i++)        {            maxDist = Math.Max(maxDist, arr[i] - arr[i - 1] - 1);        }Â
        // Check the distance from the        // first and last slot to the        // closest filled slot        maxDist = Math.Max(maxDist, arr[0] - 1);        maxDist = Math.Max(maxDist, N - arr[K - 1]);Â
        // Subtract 1 from maxDist to        // account for the time it takes        // to fill each slot        maxDist--;Â
        // Print the answer        Console.WriteLine(maxDist);    }Â
    public static void Main()    {        int N = 6;        List<int> arr = new List<int> { 2, 6 };        int K = arr.Count;        // Function Call        MinTime(arr, N, K);    }} |
Javascript
// Function to calculate the minimum time to fill all slotsfunction minTime(arr, N, K) {    // Sort the array of slots in ascending order    arr.sort((a, b) => a - b);    let maxDist = 0;Â
    // Calculate the maximum distance between adjacent slots    for (let i = 1; i < K; i++) {        maxDist = Math.max(maxDist, arr[i] - arr[i - 1] - 1);    }Â
    // Check the distance from the first and last slot to the closest filled slot    maxDist = Math.max(maxDist, arr[0] - 1);    maxDist = Math.max(maxDist, N - arr[K - 1]);Â
    // Subtract 1 from maxDist to account for the time it takes to fill each slot    maxDist--;Â
    // Print the calculated minimum time    console.log(maxDist);}//Driver codeÂ
// Total number of slotsconst N = 6;Â
// Array representing filled slotsconst arr = [2, 6];Â
// Number of filled slots (K)const K = arr.length;Â
// Call the minTime function with the given inputsminTime(arr, N, K); |
Output:-
2
Time Complexity: O(KlogK), then it loops through the vector once to calculate the maximum distance between adjacent slots and twice to calculate the distance from the first and last slot to the closest filled slot, which takes O(K) time. Therefore, the overall time complexity is O(KlogK).
Auxiliary Space: O(1).
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



