Number of intersections between two ranges

Given N ranges of type1 ranges and M ranges of type2.The task is to find the total number of intersections between all possible type1 and type2 range pairs. All start and end points of type1 and type2 ranges are given.
Examples:
Input : N = 2, M = 2
type1[ ] = { { 1, 3 }, { 5, 9 } }
type2[ ] = { { 2, 8 }, { 9, 12 } }
Output : 3
Range {2, 8} intersects with type1 ranges {1, 3} and {5, 9}
Range {9, 12} intersects with {5, 9} only.
So the total number of intersections is 3.
Input : N = 3, M = 1
type1[ ] = { { 1, 8 }, { 5, 10 }, { 14, 28 }
type2[ ] = { { 2, 8 } }
Output : 2
Approach:
- Idea is to use inclusion-exclusion method to determine the total number of intersections.
- Total possible number of intersections are n * m. Now subtract those count of type1 ranges which do not intersect with ith type2 range.
- Those type1 ranges will not intersect with ith type2 range which ends before starts of ith type2 range and starts after the end of ith type2 range.
- This count can be determined by using binary search . The C++ inbuilt function upper_bound can be used directly.
Below is the implementation of above approach:
CPP
// C++ implementation of above approach#include <bits/stdc++.h>using namespace std;// Function to return total// number of intersectionsint FindIntersection(pair<int, int> type1[], int n, pair<int, int> type2[], int m){ // Maximum possible number // of intersections int ans = n * m; vector<int> start, end; for (int i = 0; i < n; i++) { // Store all starting // points of type1 ranges start.push_back(type1[i].first); // Store all endpoints // of type1 ranges end.push_back(type1[i].second); } sort(start.begin(), start.end()); sort(end.begin(), end.end()); for (int i = 0; i < m; i++) { // Starting point of type2 ranges int L = type2[i].first; // Ending point of type2 ranges int R = type2[i].second; // Subtract those ranges which // are starting after R ans -= (start.end() - upper_bound(start.begin(), start.end(), R)); // Subtract those ranges which // are ending before L ans -= (upper_bound(end.begin(), end.end(), L - 1) - end.begin()); } return ans;}// Driver Codeint main(){ pair<int, int> type1[] = { { 1, 2 }, { 2, 3 }, { 4, 5 }, { 6, 7 } }; pair<int, int> type2[] = { { 1, 5 }, { 2, 3 }, { 4, 7 }, { 5, 7 } }; int n = sizeof(type1) / (sizeof(type1[0])); int m = sizeof(type2) / sizeof(type2[0]); cout << FindIntersection(type1, n, type2, m); return 0;} |
Java
// Java implementation of above approach import java.io.*;import java.util.*;class GFG{ static int upperBound(ArrayList<Integer> a, int low, int high, int element) { while (low < high) { int middle = low + (high - low) / 2; if (a.get(middle) > element) { high = middle; } else { low = middle + 1; } } return low; } // Function to return total // number of intersections static int FindIntersection(ArrayList<ArrayList<Integer>> type1, int n, ArrayList<ArrayList<Integer>> type2, int m ) { // Maximum possible number // of intersections int ans = n * m; ArrayList<Integer> start = new ArrayList<Integer>(); ArrayList<Integer> end = new ArrayList<Integer>(); for (int i = 0; i < n; i++) { // Store all starting // points of type1 ranges start.add(type1.get(i).get(0)); // Store all endpoints // of type1 ranges end.add(type1.get(i).get(1)); } Collections.sort(start); Collections.sort(end); for (int i = 0; i < m; i++) { // Starting point of type2 ranges int L = type2.get(i).get(0); // Ending point of type2 ranges int R = type2.get(i).get(1); // Subtract those ranges which // are starting after R ans -= start.size() - upperBound(start, 0, start.size(), R); // Subtract those ranges which // are ending before L ans -= upperBound(end, 0, end.size() , L - 1); } return ans; } // Driver Code public static void main (String[] args) { ArrayList<ArrayList<Integer>> type1 = new ArrayList<ArrayList<Integer>>(); type1.add(new ArrayList<Integer>(Arrays.asList(1,2))); type1.add(new ArrayList<Integer>(Arrays.asList(2,3))); type1.add(new ArrayList<Integer>(Arrays.asList(4,5))); type1.add(new ArrayList<Integer>(Arrays.asList(6,7))); ArrayList<ArrayList<Integer>> type2 = new ArrayList<ArrayList<Integer>>(); type2.add(new ArrayList<Integer>(Arrays.asList(1,5))); type2.add(new ArrayList<Integer>(Arrays.asList(2,3))); type2.add(new ArrayList<Integer>(Arrays.asList(4,7))); type2.add(new ArrayList<Integer>(Arrays.asList(5,7))); int n = type1.size(); int m = type2.size(); System.out.println(FindIntersection(type1, n, type2, m)); }}// This code is contributed by avanitrachhadiya2155 |
Python3
# Python3 implementation of above approachfrom bisect import bisect as upper_bound# Function to return total# number of intersectionsdef FindIntersection(type1, n, type2, m): # Maximum possible number # of intersections ans = n * m start = [] end = [] for i in range(n): # Store all starting # points of type1 ranges start.append(type1[i][0]) # Store all endpoints # of type1 ranges end.append(type1[i][1]) start = sorted(start) start = sorted(end) for i in range(m): # Starting point of type2 ranges L = type2[i][0] # Ending point of type2 ranges R = type2[i][1] # Subtract those ranges which # are starting after R ans -= (len(start)- upper_bound(start, R)) # Subtract those ranges which # are ending before L ans -= (upper_bound(end, L - 1)) return ans# Driver Codetype1 = [ [ 1, 2 ], [ 2, 3 ], [ 4, 5 ], [ 6, 7 ] ]type2 = [ [ 1, 5 ], [ 2, 3 ], [ 4, 7 ], [ 5, 7 ] ]n = len(type1)m = len(type2)print(FindIntersection(type1, n, type2, m))# This code is contributed by Mohit Kumar |
C#
// C# implementation of above approach using System;using System.Collections.Generic;class GFG{ static int upperBound(List<int> a, int low, int high, int element) { while (low < high) { int middle = low + (high - low) / 2; if (a[middle] > element) { high = middle; } else { low = middle + 1; } } return low; } // Function to return total // number of intersections static int FindIntersection(List<List<int>> type1, int n, List<List<int>> type2, int m) { // Maximum possible number // of intersections int ans = n * m; List<int> start = new List<int>(); List<int> end = new List<int>(); for (int i = 0; i < n; i++) { // Store all starting // points of type1 ranges start.Add(type1[i][0]); // Store all endpoints // of type1 ranges end.Add(type1[i][1]); } start.Sort(); end.Sort(); for (int i = 0; i < m; i++) { // Starting point of type2 ranges int L = type2[i][0]; // Ending point of type2 ranges int R = type2[i][1]; // Subtract those ranges which // are starting after R ans -= start.Count - upperBound(start, 0, start.Count, R); // Subtract those ranges which // are ending before L ans -= upperBound(end, 0, end.Count , L - 1); } return ans; } // Driver Code static public void Main () { List<List<int>> type1 = new List<List<int>>(); type1.Add(new List<int>(){1,2}); type1.Add(new List<int>(){2,3}); type1.Add(new List<int>(){4,5}); type1.Add(new List<int>(){6,7}); List<List<int>> type2 = new List<List<int>>(); type2.Add(new List<int>(){1,5}); type2.Add(new List<int>(){2,3}); type2.Add(new List<int>(){4,7}); type2.Add(new List<int>(){5,7}); int n = type1.Count; int m = type2.Count; Console.WriteLine(FindIntersection(type1, n, type2, m)); }}// This code is contributed by rag2127 |
Javascript
<script>// Javascript implementation of above approachfunction upperBound(a,low,high,element){ while (low < high) { let middle = low + Math.floor((high - low) / 2); if (a[middle] > element) { high = middle; } else { low = middle + 1; } } return low;}// Function to return total // number of intersectionsfunction FindIntersection(type1,n,type2,m){ // Maximum possible number // of intersections let ans = n * m; let start = []; let end = []; for (let i = 0; i < n; i++) { // Store all starting // points of type1 ranges start.push(type1[i][0]); // Store all endpoints // of type1 ranges end.push(type1[i][1]); } start.sort(function(a,b){return a-b;}); end.sort(function(a,b){return a-b;}); for (let i = 0; i < m; i++) { // Starting point of type2 ranges let L = type2[i][0]; // Ending point of type2 ranges let R = type2[i][1]; // Subtract those ranges which // are starting after R ans -= start.length - upperBound(start, 0, start.length, R); // Subtract those ranges which // are ending before L ans -= upperBound(end, 0, end.length , L - 1); } return ans;} // Driver Codelet type1 = [ [ 1, 2 ], [ 2, 3 ], [ 4, 5 ], [ 6, 7 ] ]; let type2 = [ [ 1, 5 ], [ 2, 3 ], [ 4, 7 ], [ 5, 7 ] ];let n = type1.length;let m = type2.length;document.write(FindIntersection(type1, n, type2, m));// This code is contributed by patel2127</script> |
Output:
9
Time Complexity: O(M*log(N))
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



