Pascal Matrix

In mathematics, particularly in matrix theory and combinatorics, the Pascal Matrix is an infinite matrix containing binomial coefficients as its elements. There are three ways to achieve this: as either an upper-triangular matrix, a lower-triangular matrix, or a symmetric matrix.
The 5 x 5 truncations of these are shown below:
The elements of the symmetric Pascal Matrix are the binomial coefficient, i.e
Given a positive integer n. The task is to print the Symmetric Pascal Matrix of size n x n.
Examples:
Input : n = 5 Output : 1 1 1 1 1 1 2 3 4 5 1 3 6 10 15 1 4 10 20 35 1 5 15 35 70
Below is the code to implement n x n symmetric pascal matrix:
C++
// CPP Program to print symmetric pascal matrix.#include <bits/stdc++.h>using namespace std;// Print Pascal Matrixvoid printpascalmatrix(int n){ int C[2 * n + 1][2 * n + 1] = { 0 }; // Calculate value of Binomial Coefficient in // bottom up manner for (int i = 0; i <= 2 * n; i++) { for (int j = 0; j <= min(i, 2 * n); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1; // Calculate value using previously // stored values else C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; } } // Printing the pascal matrix for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) cout << C[i + j][i] << " "; cout << endl; }}// Driven Programint main(){ int n = 5; printpascalmatrix(n); return 0;} |
Java
// java Program to print // symmetric pascal matrix.import java.io.*;class GFG { // Print Pascal Matrix static void printpascalmatrix(int n) { int C[][] = new int[2 * n + 1][2 * n + 1]; // Calculate value of Binomial Coefficient in // bottom up manner for (int i = 0; i <= 2 * n; i++) { for (int j = 0; j <= Math.min(i, 2 * n); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1; // Calculate value using previously // stored values else C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; } } // Printing the pascal matrix for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) System.out.print ( C[i + j][i] +" "); System.out.println(); } } // Driven Program public static void main (String[] args) { int n = 5; printpascalmatrix(n); }}// This code is contributed by vt_m. |
Python3
# Python3 Program to print # symmetric pascal matrix.# Print Pascal Matrixdef printpascalmatrix(n): C = [[0 for x in range(2 * n + 1)] for y in range(2 * n + 1)] # Calculate value of # Binomial Coefficient # in bottom up manner for i in range(2 * n + 1): for j in range(min(i, 2 * n) + 1): # Base Cases if (j == 0 or j == i): C[i][j] = 1; # Calculate value # using previously # stored values else: C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]); # Printing the # pascal matrix for i in range(n): for j in range(n): print(C[i + j][i], end = " "); print(); # Driver Coden = 5;printpascalmatrix(n);# This code is contributed by mits |
C#
// C# program to print// symmetric pascal matrix.using System;class GFG { // Print Pascal Matrix static void printpascalmatrix(int n) { int[, ] C = new int[2 * n + 1, 2 * n + 1]; // Calculate value of Binomial Coefficient // in bottom up manner for (int i = 0; i <= 2 * n; i++) { for (int j = 0; j <= Math.Min(i, 2 * n); j++) { // Base Cases if (j == 0 || j == i) C[i, j] = 1; // Calculate value using previously // stored values else C[i, j] = C[i - 1, j - 1] + C[i - 1, j]; } } // Printing the pascal matrix for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) Console.Write(C[i + j, i] + " "); Console.WriteLine(); } } // Driven Program public static void Main() { int n = 5; printpascalmatrix(n); }}// This code is contributed by vt_m. |
PHP
<?php// PHP Program to print symmetric// pascal matrix.// Print Pascal Matrixfunction printpascalmatrix($n){ $C[2 * $n + 1][2 * $n + 1] = (0); // Calculate value of Binomial // Coefficient in bottom up manner for ($i = 0; $i <= 2 * $n; $i++) { for ($j = 0; $j <= min($i, 2 * $n); $j++) { // Base Cases if ($j == 0 || $j == $i) $C[$i][$j] = 1; // Calculate value // using previously // stored values else $C[$i][$j] = $C[$i - 1][$j - 1] + $C[$i - 1][$j]; } } // Printing the pascal matrix for ($i = 0; $i < $n; $i++) { for ( $j = 0; $j < $n; $j++) echo $C[$i + $j][$i], " "; echo "\n"; }} // Driver Code $n = 5; printpascalmatrix($n);// This code is contributed by aj_36?> |
Javascript
<script>// JavaScript Program to print // symmetric pascal matrix. // Print Pascal Matrix function printpascalmatrix(n) { let C = new Array(2 * n + 1); // Loop to create 2D array using 1D array for (var i = 0; i < C.length; i++) { C[i] = new Array(2); } // Calculate value of Binomial Coefficient in // bottom up manner for (let i = 0; i <= 2 * n; i++) { for (let j = 0; j <= Math.min(i, 2 * n); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1; // Calculate value using previously // stored values else C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; } } // Printing the pascal matrix for (let i = 0; i < n; i++) { for (let j = 0; j < n; j++) document.write( C[i + j][i] +" "); document.write("<br/>"); } }// Driver code let n = 5; printpascalmatrix(n); </script> |
Output
1 1 1 1 1 1 2 3 4 5 1 3 6 10 15 1 4 10 20 35 1 5 15 35 70
Time Complexity: O(N2)
Auxiliary Space: O(N2)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




