Range maximum query using Sparse Table

Given an array arr[], the task is to answer queries to find the maximum of all the elements in the index range arr[L…R].
Examples:
Input: arr[] = {6, 7, 4, 5, 1, 3}, q[][] = {{0, 5}, {3, 5}, {2, 4}}
Output:
7
5
5
Input: arr[] = {3, 34, 1}, q[][] = {{1, 2}}
Output:
34
Approach: A similar problem to answer range minimum queries has been discussed here. The same approach can be modified to answer range maximum queries. Below is the modification:
// Maximum of single element subarrays is same // as the only element lookup[i][0] = arr[i] // If lookup[0][2] ? lookup[4][2], // then lookup[0][3] = lookup[0][2] If lookup[i][j-1] ? lookup[i+2j-1-1][j-1] lookup[i][j] = lookup[i][j-1] // If lookup[0][2] < lookup[4][2], // then lookup[0][3] = lookup[4][2] Else lookup[i][j] = lookup[i+2j-1-1][j-1]
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;#define MAX 500// lookup[i][j] is going to store maximum// value in arr[i..j]. Ideally lookup table// size should not be fixed and should be// determined using n Log n. It is kept// constant to keep code simple.int lookup[MAX][MAX];// Fills lookup array lookup[][] in bottom up mannervoid buildSparseTable(int arr[], int n){ // Initialize M for the intervals with length 1 for (int i = 0; i < n; i++) lookup[i][0] = arr[i]; // Compute values from smaller to bigger intervals for (int j = 1; (1 << j) <= n; j++) { // Compute maximum value for all intervals with // size 2^j for (int i = 0; (i + (1 << j) - 1) < n; i++) { // For arr[2][10], we compare arr[lookup[0][7]] // and arr[lookup[3][10]] if (lookup[i][j - 1] > lookup[i + (1 << (j - 1))][j - 1]) lookup[i][j] = lookup[i][j - 1]; else lookup[i][j] = lookup[i + (1 << (j - 1))][j - 1]; } }}// Returns maximum of arr[L..R]int query(int L, int R){ // Find highest power of 2 that is smaller // than or equal to count of elements in given // range // For [2, 10], j = 3 int j = (int)log2(R - L + 1); // Compute maximum of last 2^j elements with first // 2^j elements in range // For [2, 10], we compare arr[lookup[0][3]] and // arr[lookup[3][3]] if (lookup[L][j] >= lookup[R - (1 << j) + 1][j]) return lookup[L][j]; else return lookup[R - (1 << j) + 1][j];}// Driver programint main(){ int a[] = { 7, 2, 3, 0, 5, 10, 3, 12, 18 }; int n = sizeof(a) / sizeof(a[0]); buildSparseTable(a, n); cout << query(0, 4) << endl; cout << query(4, 7) << endl; cout << query(7, 8) << endl; return 0;} |
Java
// Java implementation of the approachimport java.util.*;class GFG { static final int MAX = 500; // lookup[i][j] is going to store maximum // value in arr[i..j]. Ideally lookup table // size should not be fixed and should be // determined using n Log n. It is kept // constant to keep code simple. static int lookup[][] = new int[MAX][MAX]; // Fills lookup array lookup[][] in bottom up manner static void buildSparseTable(int arr[], int n) { // Initialize M for the intervals with length 1 for (int i = 0; i < n; i++) lookup[i][0] = arr[i]; // Compute values from smaller to bigger intervals for (int j = 1; (1 << j) <= n; j++) { // Compute maximum value for all intervals with // size 2^j for (int i = 0; (i + (1 << j) - 1) < n; i++) { // For arr[2][10], we compare arr[lookup[0][7]] // and arr[lookup[3][10]] if (lookup[i][j - 1] > lookup[i + (1 << (j - 1))][j - 1]) lookup[i][j] = lookup[i][j - 1]; else lookup[i][j] = lookup[i + (1 << (j - 1))][j - 1]; } } } // Returns maximum of arr[L..R] static int query(int L, int R) { // Find highest power of 2 that is smaller // than or equal to count of elements in given // range // For [2, 10], j = 3 int j = (int)Math.log(R - L + 1); // Compute maximum of last 2^j elements with first // 2^j elements in range // For [2, 10], we compare arr[lookup[0][3]] and // arr[lookup[3][3]] if (lookup[L][j] >= lookup[R - (1 << j) + 1][j]) return lookup[L][j]; else return lookup[R - (1 << j) + 1][j]; } // Driver program public static void main(String args[]) { int a[] = { 7, 2, 3, 0, 5, 10, 3, 12, 18 }; int n = a.length; buildSparseTable(a, n); System.out.println(query(0, 4)); System.out.println(query(4, 7)); System.out.println(query(7, 8)); }} |
Python3
# Python3 implementation of the approachfrom math import logMAX = 500# lookup[i][j] is going to store maximum# value in arr[i..j]. Ideally lookup table# size should not be fixed and should be# determined using n Log n. It is kept# constant to keep code simple.lookup = [[0 for i in range(MAX)] for i in range(MAX)]# Fills lookup array lookup[][] # in bottom up mannerdef buildSparseTable(arr, n): # Initialize M for the intervals # with length 1 for i in range(n): lookup[i][0] = arr[i] # Compute values from smaller # to bigger intervals i, j = 0, 1 while (1 << j) <= n: # Compute maximum value for # all intervals with size 2^j while (i + (1 << j) - 1) < n: # For arr[2][10], we compare arr[lookup[0][7]] # and arr[lookup[3][10]] if (lookup[i][j - 1] > lookup[i + (1 << (j - 1))][j - 1]): lookup[i][j] = lookup[i][j - 1] else: lookup[i][j] = lookup[i + (1 << (j - 1))][j - 1] i += 1 j += 1# Returns maximum of arr[L..R]def query(L, R): # Find highest power of 2 that is smaller # than or equal to count of elements in given # range # For [2, 10], j = 3 j = int(log(R - L + 1)) # Compute maximum of last 2^j elements with first # 2^j elements in range # For [2, 10], we compare arr[lookup[0][3]] and # arr[lookup[3][3]] if (lookup[L][j] >= lookup[R - (1 << j) + 1][j]): return lookup[L][j] else: return lookup[R - (1 << j) + 1][j]# Driver Codea = [7, 2, 3, 0, 5, 10, 3, 12, 18]n = len(a)buildSparseTable(a, n);print(query(0, 4))print(query(4, 7))print(query(7, 8))# This code is contributed by Mohit Kumar |
C#
// Java implementation of the approachusing System;class GFG { static int MAX = 500; // lookup[i][j] is going to store maximum // value in arr[i..j]. Ideally lookup table // size should not be fixed and should be // determined using n Log n. It is kept // constant to keep code simple. static int[, ] lookup = new int[MAX, MAX]; // Fills lookup array lookup[][] in bottom up manner static void buildSparseTable(int[] arr, int n) { // Initialize M for the intervals with length 1 for (int i = 0; i < n; i++) lookup[i, 0] = arr[i]; // Compute values from smaller to bigger intervals for (int j = 1; (1 << j) <= n; j++) { // Compute maximum value for all intervals with // size 2^j for (int i = 0; (i + (1 << j) - 1) < n; i++) { // For arr[2][10], we compare arr[lookup[0][7]] // and arr[lookup[3][10]] if (lookup[i, j - 1] > lookup[i + (1 << (j - 1)), j - 1]) lookup[i, j] = lookup[i, j - 1]; else lookup[i, j] = lookup[i + (1 << (j - 1)), j - 1]; } } } // Returns maximum of arr[L..R] static int query(int L, int R) { // Find highest power of 2 that is smaller // than or equal to count of elements in given // range // For [2, 10], j = 3 int j = (int)Math.Log(R - L + 1); // Compute maximum of last 2^j elements with first // 2^j elements in range // For [2, 10], we compare arr[lookup[0][3]] and // arr[lookup[3][3]] if (lookup[L, j] >= lookup[R - (1 << j) + 1, j]) return lookup[L, j]; else return lookup[R - (1 << j) + 1, j]; } // Driver program public static void Main(String[] args) { int[] a = { 7, 2, 3, 0, 5, 10, 3, 12, 18 }; int n = a.Length; buildSparseTable(a, n); Console.WriteLine(query(0, 4)); Console.WriteLine(query(4, 7)); Console.WriteLine(query(7, 8)); }} |
Javascript
<script>// Javascript implementation of the approachlet MAX = 500;// lookup[i][j] is going to store maximum// value in arr[i..j]. Ideally lookup table// size should not be fixed and should be// determined using n Log n. It is kept// constant to keep code simple.let lookup = new Array();for(let i = 0; i < MAX; i++){ let temp = []; for(let j = 0; j < MAX; j++) { temp.push([]) } lookup.push(temp)}// Fills lookup array lookup[][] in bottom up mannerfunction buildSparseTable(arr, n){ // Initialize M for the letervals with length 1 for (let i = 0; i < n; i++) lookup[i][0] = arr[i]; // Compute values from smaller to bigger letervals for (let j = 1; (1 << j) <= n; j++) { // Compute maximum value for all letervals with // size 2^j for (let i = 0; (i + (1 << j) - 1) < n; i++) { // For arr[2][10], we compare arr[lookup[0][7]] // and arr[lookup[3][10]] if (lookup[i][j - 1] > lookup[i + (1 << (j - 1))][j - 1]) lookup[i][j] = lookup[i][j - 1]; else lookup[i][j] = lookup[i + (1 << (j - 1))][j - 1]; } }}// Returns maximum of arr[L..R]function query(L, R){ // Find highest power of 2 that is smaller // than or equal to count of elements in given // range // For [2, 10], j = 3 let j = Math.floor(Math.log2(R - L + 1)); // Compute maximum of last 2^j elements with first // 2^j elements in range // For [2, 10], we compare arr[lookup[0][3]] and // arr[lookup[3][3]] if (lookup[L][j] >= lookup[R - (1 << j) + 1][j]) return lookup[L][j]; else return lookup[R - (1 << j) + 1][j];}// Driver program let a = [ 7, 2, 3, 0, 5, 10, 3, 12, 18 ]; let n = a.length; buildSparseTable(a, n); document.write(query(0, 4) + "<br>"); document.write(query(4, 7) + "<br>"); document.write(query(7, 8) + "<br>");// This code is contributed by _saurabh_jaiswal.</script> |
Output:
7 12 18
So sparse table method supports query operation in O(1) time with O(n Log n) preprocessing time and O(n Log n) space.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



