Sum of elements in an array with frequencies greater than or equal to that element

Given an array arr[] of N integers. The task is to find the sum of the elements which have frequencies greater than or equal to that element in the array.
Examples:
Input: arr[] = {2, 1, 1, 2, 1, 6}
Output: 3
The elements in the array are {2, 1, 6}
Where,
2 appear 2 times which is greater than equal to 2 itself.
1 appear 3 times which is greater than 1 itself.
But 6 appears 1 time which is not greater than or equals to 6.
So, sum = 2 + 1 = 3.
Input: arr[] = {1, 2, 3, 3, 2, 3, 2, 3, 3}
Output: 6
Approach:
- Traverse the array and store the frequencies of all the elements in an unordered_map in C++ or equivalent data structure in any other programming language.
- Calculate the sum of elements having frequencies greater than or equal to that element.
Below is the implementation of the above approach:
C++
// C++ program to find sum of elements // in an array having frequency greater // than or equal to that element #include <bits/stdc++.h> using namespace std; // Function to return the sum of elements // in an array having frequency greater // than or equal to that element int sumOfElements(int arr[], int n) { bool prime[n + 1]; int i, j; // Map is used to store // element frequencies unordered_map<int, int> m; for (i = 0; i < n; i++) m[arr[i]]++; int sum = 0; // Traverse the map using iterators for (auto it = m.begin(); it != m.end(); it++) { // Calculate the sum of elements // having frequencies greater than // or equal to the element itself if ((it->second) >= (it->first)) { sum += (it->first); } } return sum; } // Driver code int main() { int arr[] = { 1, 2, 3, 3, 2, 3, 2, 3, 3 }; int n = sizeof(arr) / sizeof(arr[0]); cout << sumOfElements(arr, n); return 0; } |
Java
// Java program to find sum of elements // in an array having frequency greater // than or equal to that element import java.util.*; class Solution { // Function to return the sum of elements // in an array having frequency greater // than or equal to that element static int sumOfElements(int arr[], int n) { boolean prime[] = new boolean[n + 1]; int i, j; // Map is used to store // element frequencies HashMap<Integer, Integer> m= new HashMap<Integer,Integer>(); for (i = 0; i < n; i++) { if(m.get(arr[i])==null) m.put(arr[i],1); else m.put(arr[i],m.get(arr[i])+1); } int sum = 0; // Getting an iterator Iterator hmIterator = m.entrySet().iterator(); // Traverse the map using iterators while (hmIterator.hasNext()) { Map.Entry mapElement = (Map.Entry)hmIterator.next(); // Calculate the sum of elements // having frequencies greater than // or equal to the element itself if (((int)mapElement.getValue()) >= ((int)mapElement.getKey())) { sum += ((int)mapElement.getKey()); } } return sum; } // Driver code public static void main(String args[]) { int arr[] = { 1, 2, 3, 3, 2, 3, 2, 3, 3 }; int n = arr.length; System.out.println(sumOfElements(arr, n)); } } //contributed by Arnab Kundu |
Python3
# Python3 program to find sum of elements # in an array having frequency greater # than or equal to that element # Function to return the sum of elements # in an array having frequency greater # than or equal to that element def sumOfElements(arr, n) : # dictionary is used to store # element frequencies m = dict.fromkeys(arr, 0) for i in range(n) : m[arr[i]] += 1 sum = 0 # traverse the dictionary for key,value in m.items() : # Calculate the sum of elements # having frequencies greater than # or equal to the element itself if value >= key : sum += key return sum # Driver code if __name__ == "__main__" : arr = [1, 2, 3, 3, 2, 3, 2, 3, 3] n = len(arr) print(sumOfElements(arr, n)) # This code is contributed by Ryuga |
C#
// C# program to find sum of elements // in an array having frequency greater // than or equal to that element using System; using System.Collections.Generic; class GFG { // Function to return the sum of elements // in an array having frequency greater // than or equal to that element static int sumOfElements(int []arr, int n) { bool []prime = new bool[n + 1]; int i; // Map is used to store // element frequencies Dictionary<int, int> m= new Dictionary<int,int>(); for (i = 0; i < n; i++) { if(!m.ContainsKey(arr[i])) m.Add(arr[i],1); else { var val = m[arr[i]]; m.Remove(arr[i]); m.Add(arr[i], val + 1); } } int sum = 0; // Calculate the sum of elements // having frequencies greater than // or equal to the element itself foreach(KeyValuePair<int, int> entry in m) { if(entry.Value >= entry.Key) { sum+=entry.Key; } } return sum; } // Driver code public static void Main(String []args) { int []arr = { 1, 2, 3, 3, 2, 3, 2, 3, 3 }; int n = arr.Length; Console.WriteLine(sumOfElements(arr, n)); } } // This code has been contributed by 29AjayKumar |
Javascript
<script> // javascript program to find sum of elements // in an array having frequency greater // than or equal to that element // Function to return the sum of elements // in an array having frequency greater // than or equal to that element function sumOfElements(arr, n) { let prime = new Array(n + 1); let i, j; // Map is used to store // element frequencies let m = new Map(); for (i = 0; i < n; i++) { if (m.has(arr[i])) { m.set(arr[i], m.get(arr[i]) + 1) } else[ m.set(arr[i], 1) ] } let sum = 0; // Traverse the map using iterators for (let it of m) { // Calculate the sum of elements // having frequencies greater than // or equal to the element itself if ((it[1]) >= (it[0])) { sum += (it[0]); } } return sum; } // Driver code let arr = [1, 2, 3, 3, 2, 3, 2, 3, 3]; let n = arr.length; document.write(sumOfElements(arr, n)); // This code is contributed by gfgking. </script> |
Output
6
Time complexity: O(n)
Auxiliary Space: O(n)
Method #2:Using Built in python functions:
Approach:
- Calculate the frequencies using Counter() function
- Calculate the sum of elements having frequencies greater than or equal to that element.
C++
#include <iostream> #include <map> using namespace std; int sumOfElements(int arr[], int n){ // Map is used to calculate frequency of elements of array map<int, int> m; for(int i = 0; i < n; i++){ if(m.find(arr[i]) != m.end()){ m[arr[i]]++; } else { m[arr[i]] = 1; } } int sum = 0; // Traverse the map for(auto it = m.begin(); it != m.end(); ++it){ // Calculate the sum of elements // having frequencies greater than // or equal to the element itself if(it->second >= it->first){ sum += it->first; } } return sum; } int main(){ int arr[] = {1, 2, 3, 3, 2, 3, 2, 3, 3}; int n = sizeof(arr)/sizeof(arr[0]); cout << sumOfElements(arr, n) << endl; return 0; } |
Java
// Java program for the above approach import java.util.HashMap; class Main { // Function to return the sum of elements // in an array having frequency greater // than or equal to that element public static int sumOfElements(int[] arr, int n) { // HashMap is used to calculate frequency of // elements of array HashMap<Integer, Integer> m = new HashMap<Integer, Integer>(); for (int i = 0; i < n; i++) { if (m.containsKey(arr[i])) { m.put(arr[i], m.get(arr[i]) + 1); } else { m.put(arr[i], 1); } } int sum = 0; // Traverse the HashMap for (Integer key : m.keySet()) { // Calculate the sum of elements // having frequencies greater than // or equal to the element itself if (m.get(key) >= key) { sum += key; } } return sum; } // Driver code public static void main(String[] args) { int[] arr = { 1, 2, 3, 3, 2, 3, 2, 3, 3 }; int n = arr.length; System.out.println(sumOfElements(arr, n)); } } // This code is contributed by phasing17 |
Python3
# Python program for the above approach from collections import Counter # Function to return the sum of elements # in an array having frequency greater # than or equal to that element def sumOfElements(arr, n): # Counter function is used to # calculate frequency of elements of array m = Counter(arr) sum = 0 # traverse the dictionary for key, value in m.items(): # Calculate the sum of elements # having frequencies greater than # or equal to the element itself if value >= key: sum += key return sum # Driver code if __name__ == "__main__": arr = [1, 2, 3, 3, 2, 3, 2, 3, 3] n = len(arr) print(sumOfElements(arr, n)) # This code is contributed by vikkycirus |
C#
using System; using System.Collections.Generic; class MainClass { // Function to return the sum of elements // in an array having frequency greater // than or equal to that element public static int SumOfElements(int[] arr, int n) { // Dictionary is used to calculate frequency of // elements of array Dictionary<int, int> m = new Dictionary<int, int>(); for (int i = 0; i < n; i++) { if (m.ContainsKey(arr[i])) { m[arr[i]]++; } else { m.Add(arr[i], 1); } } int sum = 0; // Traverse the Dictionary foreach (KeyValuePair<int, int> kvp in m) { // Calculate the sum of elements // having frequencies greater than // or equal to the element itself if (kvp.Value >= kvp.Key) { sum += kvp.Key; } } return sum; } // Driver code public static void Main() { int[] arr = { 1, 2, 3, 3, 2, 3, 2, 3, 3 }; int n = arr.Length; Console.WriteLine(SumOfElements(arr, n)); } } |
Javascript
function sumOfElements(arr, n){ // Map function is used to calculate frequency of elements of array let m = new Map(); for(let i = 0; i < n; i++){ if(m.has(arr[i])){ m.set(arr[i], m.get(arr[i])+1); } else { m.set(arr[i], 1); } } let sum = 0; // traverse the Map for(let [key, value] of m){ // Calculate the sum of elements // having frequencies greater than // or equal to the element itself if(value >= key){ sum += key; } } return sum; } // Driver code let arr = [1, 2, 3, 3, 2, 3, 2, 3, 3]; let n = arr.length; console.log(sumOfElements(arr, n)); |
Output
6
Time Complexity: O(n)
Auxiliary Space: O(n)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



