Sum of maximum elements of all subsets

Given an array of integer numbers, we need to find sum of maximum number of all possible subsets.
Examples:
Input : arr = {3, 2, 5}
Output : 28
Explanation :
Subsets and their maximum are,
{} maximum = 0
{3} maximum = 3
{2} maximum = 2
{5} maximum = 5
{3, 2} maximum = 3
{3, 5} maximum = 5
{2, 5} maximum = 5
{3, 2, 5} maximum = 5
Sum of maximum will be, 0 + 3 + 2 + 5 + 3 + 5 + 5 + 5 = 28,
which will be our answer.
Brute force method:
A simple solution is to iterate through all subsets of array and finding maximum of all of them and then adding them in our answer, but this approach will lead us to exponential time complexity.
Approach:
We first define an array arr containing the input integers and find its size n. We also initialize a variable sum to 0, which we will use to store the sum of maximums of all subsets.
Next, we use a nested loop. The outer loop runs from 0 to (1 << n) – 1, where (1 << n) is the number of possible subsets of an array of size n. The inner loop runs from 0 to n-1, checking if the jth element of the array is present in the current subset or not. This is done by checking if the jth bit of the binary representation of i is set or not. If it is set, we update the maximum number of the subset.
After finding the maximum number of each subset, we add it to the sum variable. Finally, we print the sum as the output.
Implementation:
C++
#include <bits/stdc++.h>using namespace std;int sumOfMaximumOfSubsets(int arr[],int n){ int sum=0; for(int i = 0; i < (1 << n); i++) { int max_num = 0; // loop through all elements of the subset for(int j = 0; j < n; j++) { if(i & (1 << j)) { max_num = max(max_num, arr[j]); } } sum += max_num; } return sum;}int main() { int arr[] = {3,2, 5}; int n = sizeof(arr)/sizeof(arr[0]); cout << sumOfMaximumOfSubsets(arr, n) << endl; return 0;} |
Java
public class GFG { // Function to calculate the sum of maximum elements of all subsets static int sumOfMaximumOfSubsets(int[] arr, int n) { int sum = 0; // Iterate through all possible subsets using bit manipulation for (int i = 0; i < (1 << n); i++) { int max_num = 0; // Loop through all elements of the subset for (int j = 0; j < n; j++) { if ((i & (1 << j)) != 0) { max_num = Math.max(max_num, arr[j]); } } sum += max_num; } return sum; } public static void main(String[] args) { int[] arr = { 3, 2, 5 }; int n = arr.length; System.out.println(sumOfMaximumOfSubsets(arr, n)); }} |
Python
def sum_of_maximum_of_subsets(arr): n = len(arr) total_sum = 0 # Loop through all possible subsets for i in range(1 << n): max_num = 0 # Loop through all elements of the subset for j in range(n): if i & (1 << j): max_num = max(max_num, arr[j]) total_sum += max_num return total_sum# Main functiondef main(): arr = [3, 2, 5] result = sum_of_maximum_of_subsets(arr) print(result)if __name__ == "__main__": main() |
C#
using System;public class GFG{ public static int SumOfMaximumOfSubsets(int[] arr, int n) { int sum = 0; for (int i = 0; i < (1 << n); i++) { int maxNum = 0; // Loop through all elements of the subset for (int j = 0; j < n; j++) { if ((i & (1 << j)) != 0) { maxNum = Math.Max(maxNum, arr[j]); } } sum += maxNum; } return sum; } public static void Main() { int[] arr = { 3, 2, 5 }; int n = arr.Length; Console.WriteLine(SumOfMaximumOfSubsets(arr, n)); }} |
Javascript
function sumOfMaximumOfSubsets(arr, n){ let sum=0; for(let i = 0; i < (1 << n); i++) { let max_num = 0; // loop through all elements of the subset for(let j = 0; j < n; j++) { if(i & (1 << j)) { max_num = Math.max(max_num, arr[j]); } } sum += max_num; } return sum;}let arr = [3,2, 5];let n = arr.length;console.log(sumOfMaximumOfSubsets(arr, n)); |
output:
28
Time Complexity: O(2^n * n), where n is the size of the input array.
Auxiliary Space: O(1), since no extra space being used.
An efficient solution is based on one thing, how many subsets of array have a particular element as their maximum. As in above example, four subsets have 5 as their maximum, two subsets have 3 as their maximum and one subset has 2 as its maximum. The idea is to compute these frequencies corresponding to each element of array. Once we have frequencies, we can just multiply them with array values and sum them all, which will lead to our final result.
To find frequencies, first we sort the array in non-increasing order and when we are standing at a[i] we know, all element from a[i + 1] to a[N-1] are smaller than a[i], so any subset made by these element will choose a[i] as its maximum so count of such subsets corresponding to a[i] will be, 2^(N – i – 1) (total subset made by array elements from a[i + 1] to a[N]).
If same procedure is applied for all elements of array, we will get our final answer as,
res = a[0]*2^(N-1) + a[1]*2^(N-2) ….. + a[i]*2^(N-i-1) + ….. + a[N-1]*2^(0)
Now if we solve above equation as it is, calculating powers of 2 will take time at each index,
instead we can reform the equation similar to horner’s rule for simplification,
res = a[N] + 2*(a[N-1] + 2*(a[N-2] + 2*( …… 2*(a[2] + 2*a[1])…..))))
Total complexity of above solution will be O(N*log(N))
Implementation:
C++
// C/C++ code to find sum of maximum of all subsets of array#include <bits/stdc++.h>using namespace std;// Method returns sum of maximum of all subsetsint sumOfMaximumOfSubsets(int arr[], int N){ // sorting array in decreasing order sort(arr, arr + N, greater<int>()); // initializing sum with first element int sum = arr[0]; for (int i = 1; i < N; i++) { // calculating evaluation similar to horner's rule sum = 2 * sum + arr[i]; } return sum;}// Driver code to test above methodsint main(){ int arr[] = {3, 2, 5}; int N = sizeof(arr) / sizeof(arr[0]); cout << sumOfMaximumOfSubsets(arr, N) << endl; return 0;} |
Java
import java.util.Arrays;import java.util.Collections;// Java code to find sum of // maximum of all subsets of arrayclass GFG { // Method returns sum of maximum of all subsets static int sumOfMaximumOfSubsets(Integer arr[], int N) { // sorting array in decreasing order Arrays.sort(arr, Collections.reverseOrder()); // initializing sum with first element int sum = arr[0]; for (int i = 1; i < N; i++) { // calculating evaluation similar to horner's rule sum = 2 * sum + arr[i]; } return sum; } // Driver code public static void main(String[] args) { Integer arr[] = {3, 2, 5}; int N = arr.length; System.out.println(sumOfMaximumOfSubsets(arr, N)); }}/* This code contributed by PrinciRaj1992 */ |
Python3
# Python 3 code to find sum # of maximum of all subsets # of array# Method returns sum of# maximum of all subsetsdef sumOfMaximumOfSubsets(arr, N): # sorting array in # decreasing order arr.sort(reverse = True) # initializing sum # with first element sum = arr[0] for i in range(1, N): # calculating evaluation # similar to horner's rule sum = 2 * sum + arr[i] return sum# Driver code arr = [3, 2, 5]N = len(arr) print(sumOfMaximumOfSubsets(arr, N))# This code is contributed # by Smitha |
C#
// C# code to find sum of // maximum of all subsets of array using System;class GFG { // Method returns sum of maximum of all subsets static int sumOfMaximumOfSubsets(int []arr, int N) { // sorting array in decreasing order Array.Sort(arr); Array.Reverse(arr); // initializing sum with first element int sum = arr[0]; for (int i = 1; i < N; i++) { // calculating evaluation // similar to horner's rule sum = 2 * sum + arr[i]; } return sum; } // Driver code public static void Main(String[] args) { int []arr = {3, 2, 5}; int N = arr.Length; Console.WriteLine(sumOfMaximumOfSubsets(arr, N)); }}// This code has been contributed by 29AjayKumar |
Javascript
<script>// JavaScript code to find sum of // maximum of all subsets of array// Method returns sum of maximum of all subsetsfunction sumOfMaximumOfSubsets(arr,N){ // sorting array in decreasing order arr.sort((a,b)=>a-b); arr.reverse(); // initializing sum with first element let sum = arr[0]; for (let i = 1; i < N; i++) { // calculating evaluation similar to horner's rule sum = 2 * sum + arr[i]; } return sum;} let arr= [3, 2, 5]; let N = arr.length; document.write(sumOfMaximumOfSubsets(arr, N)); </script> |
PHP
<?php// PHP code to find sum of maximum of // all subsets of array// Method returns sum of maximum of all subsetsfunction sumOfMaximumOfSubsets($arr, $N){ // sorting array in decreasing order rsort($arr); // initializing sum with first element $sum = $arr[0]; for ( $i = 1; $i < $N; $i++) { // calculating evaluation similar // to horner's rule $sum = 2 * $sum + $arr[$i]; } return $sum;}// Driver Code$arr = array(3, 2, 5);$N = count($arr);echo sumOfMaximumOfSubsets($arr, $N);// This code is contributed by Rajput-Ji?> |
28
Time Complexity: O(N log N), since sort() function is used.
Auxiliary Space: O(1), since no extra space being used.
This article is contributed by Utkarsh Trivedi. If you like zambiatek and would like to contribute, you can also write an article using write.zambiatek.com or mail your article to review-team@zambiatek.com. See your article appearing on the zambiatek main page and help other Geeks.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



