Sum of squares of first n natural numbers

Given a positive integer N. The task is to find 12 + 22 + 32 + ….. + N2.
Examples :
Input : N = 4 Output : 30 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30 Input : N = 5 Output : 55
Method 1: O(N) The idea is to run a loop from 1 to n and for each i, 1 <= i <= n, find i2 to sum.
Below is the implementation of this approach
C++
// CPP Program to find sum of square of first n natural numbers#include <bits/stdc++.h>using namespace std;// Return the sum of square of first n natural numbersint squaresum(int n){ // Iterate i from 1 and n // finding square of i and add to sum. int sum = 0; for (int i = 1; i <= n; i++) sum += (i * i); return sum;}// Driven Programint main(){ int n = 4; cout << squaresum(n) << endl; return 0;} |
Java
// Java Program to find sum of // square of first n natural numbersimport java.io.*;class GFG { // Return the sum of square of first n natural numbers static int squaresum(int n) { // Iterate i from 1 and n // finding square of i and add to sum. int sum = 0; for (int i = 1; i <= n; i++) sum += (i * i); return sum; } // Driven Program public static void main(String args[])throws IOException { int n = 4; System.out.println(squaresum(n)); }}/*This code is contributed by Nikita Tiwari.*/ |
Python3
# Python3 Program to# find sum of square# of first n natural # numbers# Return the sum of# square of first n# natural numbersdef squaresum(n) : # Iterate i from 1 # and n finding # square of i and # add to sum. sm = 0 for i in range(1, n+1) : sm = sm + (i * i) return sm# Driven Programn = 4print(squaresum(n))# This code is contributed by Nikita Tiwari.*/ |
C#
// C# Program to find sum of// square of first n natural numbersusing System;class GFG { // Return the sum of square of first // n natural numbers static int squaresum(int n) { // Iterate i from 1 and n // finding square of i and add to sum. int sum = 0; for (int i = 1; i <= n; i++) sum += (i * i); return sum; } // Driven Program public static void Main() { int n = 4; Console.WriteLine(squaresum(n)); }}/* This code is contributed by vt_m.*/ |
PHP
<?php// PHP Program to find sum of // square of first n natural numbers// Return the sum of square of// first n natural numbersfunction squaresum($n){ // Iterate i from 1 and n // finding square of i and // add to sum. $sum = 0; for ($i = 1; $i <= $n; $i++) $sum += ($i * $i); return $sum;}// Driven Code$n = 4;echo(squaresum($n));// This code is contributed by Ajit.?> |
Javascript
<script>// Javascript Program to find sum of square of first n natural numbers// Return the sum of square of first n natural numbersfunction squaresum(n){ // Iterate i from 1 and n // finding square of i and add to sum. let sum = 0; for (let i = 1; i <= n; i++) sum += (i * i); return sum;}// Driven Program let n = 4; document.write(squaresum(n) + "<br>");// This code is contributed by Mayank Tyagi</script> |
Output :
30
Time Complexity: O(n)
Auxiliary Space: O(1)
Method 2: O(1)
Sum of squares of first N natural numbers = (N*(N+1)*(2*N+1))/6
For example
For N=4, Sum = ( 4 * ( 4 + 1 ) * ( 2 * 4 + 1 ) ) / 6
= 180 / 6
= 30
For N=5, Sum = ( 5 * ( 5 + 1 ) * ( 2 * 5 + 1 ) ) / 6
= 55
Proof:
We know,
(k + 1)3 = k3 + 3 * k2 + 3 * k + 1
We can write the above identity for k from 1 to n:
23 = 13 + 3 * 12 + 3 * 1 + 1 ......... (1)
33 = 23 + 3 * 22 + 3 * 2 + 1 ......... (2)
43 = 33 + 3 * 32 + 3 * 3 + 1 ......... (3)
53 = 43 + 3 * 42 + 3 * 4 + 1 ......... (4)
...
n3 = (n - 1)3 + 3 * (n - 1)2 + 3 * (n - 1) + 1 ......... (n - 1)
(n + 1)3 = n3 + 3 * n2 + 3 * n + 1 ......... (n)
Putting equation (n - 1) in equation n,
(n + 1)3 = (n - 1)3 + 3 * (n - 1)2 + 3 * (n - 1) + 1 + 3 * n2 + 3 * n + 1
= (n - 1)3 + 3 * (n2 + (n - 1)2) + 3 * ( n + (n - 1) ) + 1 + 1
By putting all equation, we get
(n + 1)3 = 13 + 3 * ? k2 + 3 * ? k + ? 1
n3 + 3 * n2 + 3 * n + 1 = 1 + 3 * ? k2 + 3 * (n * (n + 1))/2 + n
n3 + 3 * n2 + 3 * n = 3 * ? k2 + 3 * (n * (n + 1))/2 + n
n3 + 3 * n2 + 2 * n - 3 * (n * (n + 1))/2 = 3 * ? k2
n * (n2 + 3 * n + 2) - 3 * (n * (n + 1))/2 = 3 * ? k2
n * (n + 1) * (n + 2) - 3 * (n * (n + 1))/2 = 3 * ? k2
n * (n + 1) * (n + 2 - 3/2) = 3 * ? k2
n * (n + 1) * (2 * n + 1)/2 = 3 * ? k2
n * (n + 1) * (2 * n + 1)/6 = ? k2
Below is the implementation of this approach:
C++
// CPP Program to find sum // of square of first n// natural numbers#include <bits/stdc++.h>using namespace std;// Return the sum of square of// first n natural numbersint squaresum(int n){ return (n * (n + 1) * (2 * n + 1)) / 6;}// Driven Programint main(){ int n = 4; cout << squaresum(n) << endl; return 0;} |
Java
// Java Program to find sum // of square of first n// natural numbersimport java.io.*;class GFG { // Return the sum of square // of first n natural numbers static int squaresum(int n) { return (n * (n + 1) * (2 * n + 1)) / 6; } // Driven Program public static void main(String args[]) throws IOException { int n = 4; System.out.println(squaresum(n)); }}/*This code is contributed by Nikita Tiwari.*/ |
Python3
# Python3 Program to# find sum of square # of first n natural # numbers# Return the sum of # square of first n# natural numbersdef squaresum(n) : return (n * (n + 1) * (2 * n + 1)) // 6# Driven Programn = 4print(squaresum(n))#This code is contributed by Nikita Tiwari. |
C#
// C# Program to find sum// of square of first n// natural numbersusing System;class GFG { // Return the sum of square // of first n natural numbers static int squaresum(int n) { return (n * (n + 1) * (2 * n + 1)) / 6; } // Driven Program public static void Main() { int n = 4; Console.WriteLine(squaresum(n)); }}/*This code is contributed by vt_m.*/ |
PHP
<?php// PHP Program to find sum // of square of first n// natural numbers// Return the sum of square of// first n natural numbersfunction squaresum($n){ return ($n * ($n + 1) * (2 * $n + 1)) / 6;}// Driven Code$n = 4;echo(squaresum($n));// This code is contributed by Ajit.?> |
Javascript
<script>// Javascript program to find sum // of square of first n// natural numbers// Return the sum of square of// first n natural numbersfunction squaresum(n){ return parseInt((n * (n + 1) * (2 * n + 1)) / 6);}// Driver codelet n = 4;document.write(squaresum(n));// This code is contributed by rishavmahato348</script> |
Output :
30
Time Complexity: O(1)
Auxiliary Space: O(1), since no extra space has been taken
Avoiding early overflow:
For large n, the value of (n * (n + 1) * (2 * n + 1)) would overflow. We can avoid overflow up to some extent using the fact that n*(n+1) must be divisible by 2.
C++
// CPP Program to find sum of square of first// n natural numbers. This program avoids// overflow upto some extent for large value// of n.#include <bits/stdc++.h>using namespace std;// Return the sum of square of first n natural// numbersint squaresum(int n){ return (n * (n + 1) / 2) * (2 * n + 1) / 3;}// Driven Programint main(){ int n = 4; cout << squaresum(n) << endl; return 0;} |
Python3
# Python Program to find sum of square of first# n natural numbers. This program avoids# overflow upto some extent for large value# of n.ydef squaresum(n): return (n * (n + 1) / 2) * (2 * n + 1) / 3# main()n = 4print(squaresum(n));# Code Contributed by Mohit Gupta_OMG <(0_o)> |
Java
// Java Program to find sum of square of first// n natural numbers. This program avoids// overflow upto some extent for large value// of n.import java.io.*;import java.util.*; class GFG{ // Return the sum of square of first n natural // numberspublic static int squaresum(int n){ return (n * (n + 1) / 2) * (2 * n + 1) / 3;} public static void main (String[] args) { int n = 4; System.out.println(squaresum(n)); }}// Code Contributed by Mohit Gupta_OMG <(0_o)> |
C#
// C# Program to find sum of square of first// n natural numbers. This program avoids// overflow upto some extent for large value// of n.using System;class GFG { // Return the sum of square of // first n natural numbers public static int squaresum(int n) { return (n * (n + 1) / 2) * (2 * n + 1) / 3; } // Driver Code public static void Main() { int n = 4; Console.WriteLine(squaresum(n)); }}// This Code is Contributed by vt_m.> |
PHP
<?php// PHP Program to find // sum of square of first// n natural numbers. // This program avoids// overflow upto some // extent for large value// of n.// Return the sum of square// of first n natural numbersfunction squaresum($n){ return ($n * ($n + 1) / 2) * (2 * $n + 1) / 3;} // Driver Code $n = 4; echo squaresum($n) ; // This code is contributed by vt_m.?> |
Javascript
<script>// javascript Program to find sum of square of first// n natural numbers. This program avoids// overflow upto some extent for large value// of n.// Return the sum of square of first n natural// numbersfunction squaresum( n){ return (n * (n + 1) / 2) * (2 * n + 1) / 3;}// Driven Program let n = 4; document.write(squaresum(n));// This code contributed by aashish1995 </script> |
Output:
30
Time complexity: O(1) since performing constant operations
Space complexity: O(1) since using constant variables
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



