Number of ways to select a node from each connected component

Given a graph with N nodes and M edges. The task is to find the number of ways to select a node from each connected component of the given graph.
Examples:
Input:
Output: 3
(1, 4), (2, 4), (3, 4) are possible ways.
Input:
Output: 6
(1, 4, 5), (2, 4, 5), (3, 4, 5), (1, 4, 6), (2, 4, 6), (3, 4, 6) are possible ways.
Approach: A product of the number of nodes in each connected component is the required answer. Run a simple dfs to find the number of nodes in each connected component.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;#define N 100005int n, m, temp;vector<int> gr[N];int vis[N];// Function to add edges in the graphvoid Add_edges(int x, int y){ gr[x].push_back(y); gr[y].push_back(x);}// Function for DFSvoid dfs(int ch){ // Mark node as visited vis[ch] = 1; // Count number of nodes in a component temp++; for (auto i : gr[ch]) if (!vis[i]) dfs(i);}// Function to return the required number of waysint NumberOfWays(){ // To store the required answer int ans = 1; memset(vis, 0, sizeof vis); for (int i = 1; i <= n; i++) { // If current node hasn't been visited yet if (!vis[i]) { temp = 0; dfs(i); // Multiply it with the answer ans *= temp; } } return ans;}// Driver codeint main(){ n = 4, m = 2; // Add edges Add_edges(1, 2); Add_edges(1, 3); cout << NumberOfWays(); return 0;} |
Java
// Java implementation of the approach import java.util.*;class GFG{ static final int N = 100005;static int n, m, temp; static Vector<Integer> []gr = new Vector[N]; static int []vis = new int[N]; // Function to add edges in the graph static void Add_edges(int x, int y) { gr[x].add(y); gr[y].add(x); } // Function for DFS static void dfs(int ch) { // Mark node as visited vis[ch] = 1; // Count number of nodes in a component temp++; for (int i : gr[ch]) if (vis[i] == 0) dfs(i); } // Function to return the required number of ways static int NumberOfWays() { // To store the required answer int ans = 1; Arrays.fill(vis, 0); for (int i = 1; i <= n; i++) { // If current node hasn't been visited yet if (vis[i] == 0) { temp = 0; dfs(i); // Multiply it with the answer ans *= temp; } } return ans; } // Driver code public static void main(String[] args) { n = 4; m = 2; for (int i = 0; i < N; i++) gr[i] = new Vector<Integer>(); // Add edges Add_edges(1, 2); Add_edges(1, 3); System.out.print(NumberOfWays()); }} // This code is contributed by PrinciRaj1992 |
Python3
# Python3 implementation of the approach# Function to add edges in the graphdef Add_edges(x, y): gr[x].append(y) gr[y].append(x)# Function for DFSdef dfs(ch): # Mark node as visited vis[ch] = 1 global temp # Count number of nodes # in a component temp += 1 for i in gr[ch]: if not vis[i]: dfs(i)# Function to return the required # number of waysdef NumberOfWays(): # To store the required answer ans = 1 global temp for i in range(1, n + 1): # If current node hasn't been # visited yet if not vis[i]: temp = 0 dfs(i) # Multiply it with the answer ans *= temp return ans# Driver codeif __name__ == "__main__": n, m, temp = 4, 2, 0 N = 100005 gr = [[] for i in range(N)] vis = [None] * N # Add edges Add_edges(1, 2) Add_edges(1, 3) print(NumberOfWays())# This code is contributed by Rituraj Jain |
C#
// C# implementation of the approach using System;using System.Collections.Generic;class GFG{ static readonly int N = 100005;static int n, m, temp; static List<int> []gr = new List<int>[N]; static int []vis = new int[N]; // Function to add edges in the graph static void Add_edges(int x, int y) { gr[x].Add(y); gr[y].Add(x); } // Function for DFS static void dfs(int ch) { // Mark node as visited vis[ch] = 1; // Count number of nodes in a component temp++; foreach (int i in gr[ch]) if (vis[i] == 0) dfs(i); } // Function to return the required number of ways static int NumberOfWays() { // To store the required answer int ans = 1; for(int i= 0; i < N; i++) vis[i] = 0; for (int i = 1; i <= n; i++) { // If current node hasn't been visited yet if (vis[i] == 0) { temp = 0; dfs(i); // Multiply it with the answer ans *= temp; } } return ans; } // Driver code public static void Main(String[] args) { n = 4; m = 2; for (int i = 0; i < N; i++) gr[i] = new List<int>(); // Add edges Add_edges(1, 2); Add_edges(1, 3); Console.Write(NumberOfWays()); }}// This code is contributed by 29AjayKumar |
Javascript
<script>// Javascript implementation of the approach let N = 100005;let n, m, temp; let gr = new Array(N);let vis = new Array(N);// Function to add edges in the graph function Add_edges(x,y){ gr[x].push(y); gr[y].push(x);}// Function for DFS function dfs(ch){ // Mark node as visited vis[ch] = 1; // Count number of nodes in a component temp++; for (let i of gr[ch]) if (vis[i] == 0) dfs(i); }// Function to return the required number of ways function NumberOfWays() { // To store the required answer let ans = 1; for(let i=0;i<vis.length;i++) vis[i]=0; for (let i = 1; i <= n; i++) { // If current node hasn't been visited yet if (vis[i] == 0) { temp = 0; dfs(i); // Multiply it with the answer ans *= temp; } } return ans; }// Driver code n = 4;m = 2; for (let i = 0; i < N; i++) gr[i] = [];// Add edges Add_edges(1, 2); Add_edges(1, 3); document.write(NumberOfWays()); // This code is contributed by unknown2108</script> |
Output:
3
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




