3-digit Osiris number

Given a 3-digit number N, the task is to find if N is an Osiris number or not. Osiris numbers are the numbers that are equal to the sum of permutations of sub-samples of their own digits. For example, 132 is an Osiris number as it is equal to 12 + 21 + 13 + 31 + 23 + 32.
Examples:
Input: N = 132
Output: Yes
12 + 21 + 13 + 31 + 23 + 32 = 132Input: N = 154
Output: No
Approach:
If n = 132,
132 = 12 + 21 + 13 + 31 + 23 + 32
132 = 2 * 11 + 2 * 22 + 2 * 33
132 = 22 + 44 + 66
132 = (2 + 4 + 6) * 11
132 = 2 * (1 + 2 + 3) * 11, each digit of 132 occurs twice in the ones and tens position of the sums.
The same rule applies for every 3-digit Osiris number and can be reciprocated to check whether a number is an Osiris number or not.
For a 3-digit number N to be considered as an Osiris number, N must be equal to 2 * (sum of digits) * 11
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function that returns true if// n is an Osiris numberbool isOsiris(int n){ // 3rd digit int a = n % 10; // 2nd digit int b = (n / 10) % 10; // 1st digit int c = n / 100; int digit_sum = a + b + c; // Check the required condition if (n == (2 * (digit_sum)*11)) { return true; } return false;}// Driver codeint main(){ int n = 132; if (isOsiris(n)) cout << "Yes"; else cout << "No"; return 0;} |
Java
// Java implementation of the approachclass GFG{ // Function that returns true if// n is an Osiris numberstatic boolean isOsiris(int n){ // 3rd digit int a = n % 10; // 2nd digit int b = (n / 10) % 10; // 1st digit int c = n / 100; int digit_sum = a + b + c; // Check the required condition if (n == (2 * (digit_sum)*11)) { return true; } return false;}// Driver codepublic static void main(String args[]){ int n = 132; if (isOsiris(n)) System.out.println("Yes"); else System.out.println("No");}}// This code is contributed by Akanksha Rai |
Python3
# Python implementation of the approach# Function that returns true if # n is an Osiris numberdef isOsiris(n): # 3rd digit a = n % 10 # 2nd digit b = (n//10)% 10 # 1st digit c = n//100 digit_sum = a + b + c # Check the required condition if(n == (2 * (digit_sum) * 11)): return True return False# Driver codeif __name__ == '__main__': n = 132 if isOsiris(n): print("Yes") else : print("No") |
C#
// C# implementation of the approachusing System;class GFG{// Function that returns true if// n is an Osiris numberstatic bool isOsiris(int n){ // 3rd digit int a = n % 10; // 2nd digit int b = (n / 10) % 10; // 1st digit int c = n / 100; int digit_sum = a + b + c; // Check the required condition if (n == (2 * (digit_sum)*11)) { return true; } return false;}// Driver codestatic void Main(){ int n = 132; if (isOsiris(n)) Console.WriteLine("Yes"); else Console.WriteLine("No");}}// This code is contributed by mits |
PHP
<?php// PHP implementation of the approach // Function that returns true if // n is an Osiris number function isOsiris($n) { // 3rd digit $a = $n % 10; // 2nd digit $b = floor($n / 10) % 10; // 1st digit $c = floor($n / 100); $digit_sum = $a + $b + $c; // Check the required condition if ($n == (2 * ($digit_sum) * 11)) { return true; } return false; } // Driver code $n = 132; if (isOsiris($n)) echo "Yes"; else echo "No"; // This code is contributed by Ryuga?> |
Javascript
<script>// Javascript implementation of the approach// Function that returns true if// n is an Osiris numberfunction isOsiris(n){ // 3rd digit let a = n % 10; // 2nd digit let b = parseInt((n / 10) % 10); // 1st digit let c = parseInt(n / 100); let digit_sum = a + b + c; // Check the required condition if (n == (2 * (digit_sum) * 11)) { return true; } return false;}// Driver codelet n = 132;if (isOsiris(n)) document.write("Yes");else document.write("No"); // This code is contributed by souravmahato348</script> |
Yes
Time Complexity: O(1)
Space Complexity: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



