Blum Integer

Blum Integer is a semi-prime number, suppose p and q are the two factors (i.e. n = p * q), they(p and q) are of the form 4t + 3, where t is some integer.
First few Blum Integers are 21, 33, 57, 69, 77, 93, 129, 133, 141, 161, 177, …
Note: Because of the condition that both the factors should be semi-primes, even numbers can not be Blum integers neither can be the numbers below 20,
So we have to check only for an odd integer greater than 20 if it is a Blum Integer or not.
Examples :
Input: 33 Output: Yes Explanation: 33 = 3 * 11, 3 and 11 are both semi-primes as well as of the form 4t + 3 for t = 0, 2 Input: 77 Output: Yes Explanation: 77 = 7 * 11, 7 and 11 both are semi-prime as well as of the form 4t + 3 for t = 1, 2 Input: 25 Output: No Explanation: 25 = 5*5, 5 and 5 are both semi-prime but are not of the form 4t + 3, Hence 25 is not a Blum integer.
Approach: For a given odd integer greater than 20, we calculate the prime numbers from 1 to that odd integer. If we find any prime number that divides that odd integer and its quotient both are prime and follow the form 4t + 3 for some integer, then the given odd integer is Blum Integer.
Below is the implementation of above approach :
C++
// CPP program to check if a number is a Blum// integer#include <bits/stdc++.h>using namespace std;// Function to cheek if number is Blum Integerbool isBlumInteger(int n){ bool prime[n + 1]; memset(prime, true, sizeof(prime)); // to store prime numbers from 2 to n for (int i = 2; i * i <= n; i++) { // If prime[i] is not // changed, then it is a prime if (prime[i] == true) { // Update all multiples of p for (int j = i * 2; j <= n; j += i) prime[j] = false; } } // to check if the given odd integer // is Blum Integer or not for (int i = 2; i <= n; i++) { if (prime[i]) { // checking the factors // are of 4t+3 form or not if ((n % i == 0) && ((i - 3) % 4) == 0) { int q = n / i; return (q != i && prime[q] && (q - 3) % 4 == 0); } } } return false;}// driver codeint main(){ // give odd integer greater than 20 int n = 249; if (isBlumInteger(n)) cout << "Yes"; else cout << "No";} |
Java
// Java implementation to check If// a number is a Blum integerimport java.util.*;class GFG { public static boolean isBlumInteger(int n) { boolean prime[] = new boolean[n + 1]; for (int i = 0; i < n; i++) prime[i] = true; // to store prime numbers from 2 to n for (int i = 2; i * i <= n; i++) { // If prime[i] is not changed, // then it is a prime if (prime[i] == true) { // Update all multiples of p for (int j = i * 2; j <= n; j += i) prime[j] = false; } } // to check if the given odd integer // is Blum Integer or not for (int i = 2; i <= n; i++) { if (prime[i]) { // checking the factors are // of 4t + 3 form or not if ((n % i == 0) && ((i - 3) % 4) == 0) { int q = n / i; return (q != i && prime[q] && (q - 3) % 4 == 0); } } } return false; } // driver code public static void main(String[] args) { // give odd integer greater than 20 int n = 249; if (isBlumInteger(n) == true) System.out.println("Yes"); else System.out.println("No"); }} |
Python3
# python 3 program to check if a# number is a Blum integer# Function to cheek if number # is Blum Integerdef isBlumInteger(n): prime = [True]*(n + 1) # to store prime numbers from 2 to n i = 2 while (i * i <= n): # If prime[i] is not # changed, then it is a prime if (prime[i] == True) : # Update all multiples of p for j in range(i * 2, n + 1, i): prime[j] = False i = i + 1 # to check if the given odd integer # is Blum Integer or not for i in range(2, n + 1) : if (prime[i]) : # checking the factors # are of 4t+3 form or not if ((n % i == 0) and ((i - 3) % 4) == 0): q = int(n / i) return (q != i and prime[q] and (q - 3) % 4 == 0) return False# driver code# give odd integer greater than 20n = 249if (isBlumInteger(n)): print("Yes")else: print("No")# This code is contributed by Smitha. |
C#
// C# implementation to check If// a number is a Blum integerusing System;class GFG { public static bool isBlumInteger(int n) { bool[] prime = new bool[n + 1]; for (int i = 0; i < n; i++) prime[i] = true; // to store prime numbers from 2 to n for (int i = 2; i * i <= n; i++) { // If prime[i] is not changed, // then it is a prime if (prime[i] == true) { // Update all multiples of p for (int j = i * 2; j <= n; j += i) prime[j] = false; } } // to check if the given odd integer // is Blum Integer or not for (int i = 2; i <= n; i++) { if (prime[i]) { // checking the factors are // of 4t + 3 form or not if ((n % i == 0) && ((i - 3) % 4) == 0) { int q = n / i; return (q != i && prime[q] && (q - 3) % 4 == 0); } } } return false; } // Driver code static public void Main () { // give odd integer greater than 20 int n = 249; if (isBlumInteger(n) == true) Console.WriteLine("Yes"); else Console.WriteLine("No"); }}// This code is contributed by Ajit. |
PHP
<?php// PHP program to check if a// number is a Blum integer// Function to cheek if // number is Blum Integerfunction isBlumInteger($n){ $prime = array_fill(0, $n + 1, true); // to store prime // numbers from 2 to n for ($i = 2; $i * $i <= $n; $i++) { // If prime[i] is not // changed, then it is a prime if ($prime[$i] == true) { // Update all multiples of p for ($j = $i * 2; $j <= $n; $j += $i) $prime[$j] = false; } } // to check if the given // odd integer is Blum // Integer or not for ($i = 2; $i <= $n; $i++) { if ($prime[$i]) { // checking the factors // are of 4t+3 form or not if (($n % $i == 0) && (($i - 3) % 4) == 0) { $q = (int)$n / $i; return ($q != $i && $prime[$q] && ($q - 3) % 4 == 0); } } } return false;}// Driver code// give odd integer// greater than 20$n = 249;if (isBlumInteger($n)) echo "Yes";else echo "No";// This code is contributed by mits.?> |
Javascript
<script>// Javascript implementation to check If// a number is a Blum integerfunction isBlumInteger(n){ let prime = new Array(n + 1); for(let i = 0; i < n; i++) prime[i] = true; // To store prime numbers from 2 to n for(let i = 2; i * i <= n; i++) { // If prime[i] is not changed, // then it is a prime if (prime[i] == true) { // Update all multiples of p for(let j = i * 2; j <= n; j += i) prime[j] = false; } } // To check if the given odd integer // is Blum Integer or not for(let i = 2; i <= n; i++) { if (prime[i]) { // Checking the factors are // of 4t + 3 form or not if ((n % i == 0) && ((i - 3) % 4) == 0) { let q = parseInt(n / i, 10); return (q != i && prime[q] && (q - 3) % 4 == 0); } } } return false;}// Driver code// Give odd integer greater than 20let n = 249;if (isBlumInteger(n) == true) document.write("Yes");else document.write("No"); // This code is contributed by decode2207</script> |
Yes
Time Complexity: O(nsqrtn)
Auxiliary Space: O(n)
Please suggest if someone has a better solution which is more efficient in terms of space and time.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



