Check if every vertex triplet in graph contains two vertices connected to third vertex

Given an undirected graph with N vertices and K edges, the task is to check if for every combination of three vertices in the graph, there exists two vertices which are connected to third vertex. In other words, for every vertex triplet (a, b, c), if there exists a path between a and c, then there should also exist a path between b and c.
Examples:
Input: N = 4, K = 3
Edges: 1 -> 2, 2 -> 3, 3 -> 4
Output: YES
Explanation:
Since the whole graph is connected, the above condition will always be valid.Input: N = Â 5 and K = 3
Edges: 1 -> 3, 3 -> 4, 2 -> 5.
Output: NO
Explanation:Â
If we consider the triplet (1, 2, 3) then there is a path between vertices 1 and 3 but there is no path between vertices 2 and 3.
Approach: Follow the steps below to solve the problem –
- Traverse the graph by DFS Traversal technique from any component and maintain two variables to store the component minimum and component maximum.
- Store every component maximum and minimum in a vector.
- Now, if any two components have an intersection in their minimum and maximum values interval, then there will exist a valid (a < b < c) triplet. Hence, both of the components should be connected. Otherwise, the graph is not valid.
Below is the implementation of the above approach
C++
// C++ program of the// above approachÂ
#include <bits/stdc++.h>using namespace std;Â
// Function to add edge into// the graphvoid addEdge(vector<int> adj[],             int u, int v){    adj[u].push_back(v);    adj[v].push_back(u);}Â
void DFSUtil(int u, vector<int> adj[],             vector<bool>& visited,             int& componentMin,             int& componentMax){    visited[u] = true;Â
    // Finding the maximum and    // minimum values in each component    componentMax = max(componentMax, u);    componentMin = min(componentMin, u);Â
    for (int i = 0; i < adj[u].size(); i++)        if (visited[adj[u][i]] == false)            DFSUtil(adj[u][i], adj, visited,                    componentMin, componentMax);}Â
// Function for checking whether// the given graph is valid or notbool isValid(vector<pair<int, int> >& v){    int MAX = -1;    bool ans = 0;    // Checking for intersecting intervals    for (auto i : v) {        // If intersection is found        if (i.first <= MAX) {Â
            // Graph is not valid            ans = 1;        }Â
        MAX = max(MAX, i.second);    }Â
    return (ans == 0 ? 1 : 0);}Â
// Function for the DFS Traversalvoid DFS(vector<int> adj[], int V){    std::vector<pair<int, int> > v;    // Traversing for every vertex    vector<bool> visited(V, false);    for (int u = 1; u <= V; u++) {        if (visited[u] == false) {            int componentMax = u;            int componentMin = u;Â
            DFSUtil(u, adj, visited,                    componentMin, componentMax);Â
            // Storing maximum and minimum            // values of each component            v.push_back({ componentMin,                          componentMax });        }    }Â
    bool check = isValid(v);Â
    if (check)        cout << "Yes";    else        cout << "No";Â
    return;}Â
// Driver codeint main(){Â Â Â Â int N = 4, K = 3;Â
    vector<int> adj[N + 1];Â
    addEdge(adj, 1, 2);    addEdge(adj, 2, 3);    addEdge(adj, 3, 4);Â
    DFS(adj, N);Â
    return 0;} |
Java
// Java program of the // above approachimport java.util.*;import java.lang.*;Â
class GFG{Â Â Â Â Â static class pair{Â Â Â Â int first, second;Â Â Â Â pair(int first, int second)Â Â Â Â {Â Â Â Â Â Â Â Â this.first = first;Â Â Â Â Â Â Â Â this.second = second;Â Â Â Â }}Â
// Function to add edge into// the graphstatic void addEdge(ArrayList<ArrayList<Integer>> adj,                    int u, int v){    adj.get(u).add(v);    adj.get(v).add(u);}Â
static void DFSUtil(int u,                     ArrayList<ArrayList<Integer>> adj,                    boolean[] visited,                    int componentMin,                    int componentMax){    visited[u] = true;Â
    // Finding the maximum and    // minimum values in each component    componentMax = Math.max(componentMax, u);    componentMin = Math.min(componentMin, u);Â
    for(int i = 0; i < adj.get(u).size(); i++)        if (visited[adj.get(u).get(i)] == false)            DFSUtil(adj.get(u).get(i), adj, visited,                    componentMin, componentMax);}Â
// Function for checking whether// the given graph is valid or notstatic boolean isValid(ArrayList<pair> v){    int MAX = -1;    boolean ans = false;         // Checking for intersecting intervals    for(pair i : v)    {                 // If intersection is found        if (i.first <= MAX)        {                         // Graph is not valid            ans = true;        }        MAX = Math.max(MAX, i.second);    }    return (ans == false ? true : false);}Â
// Function for the DFS Traversalstatic void DFS(ArrayList<ArrayList<Integer>> adj,                 int V){   ArrayList<pair> v = new ArrayList<>();       // Traversing for every vertex   boolean[] visited = new boolean[V + 1];        for(int u = 1; u <= V; u++)    {        if (visited[u] == false)         {            int componentMax = u;            int componentMin = u;Â
            DFSUtil(u, adj, visited,                    componentMin,                    componentMax);Â
            // Storing maximum and minimum            // values of each component            v.add(new pair(componentMin,                           componentMax));        }    }Â
    boolean check = isValid(v);Â
    if (check)        System.out.println("Yes");    else        System.out.println("No");Â
    return;}Â
// Driver codepublic static void main (String[] args){Â Â Â Â int N = 4, K = 3;Â Â Â Â Â Â Â Â Â ArrayList<ArrayList<Integer>> adj = new ArrayList<>();Â Â Â Â Â Â Â Â Â for(int i = 0; i <= N + 1; i++)Â Â Â Â Â Â Â Â adj.add(new ArrayList<>());Â Â Â Â Â Â Â Â Â addEdge(adj, 1, 2);Â Â Â Â addEdge(adj, 2, 3);Â Â Â Â addEdge(adj, 3, 4);Â Â Â Â Â Â Â Â Â DFS(adj, N);}}Â
// This code is contributed by offbeat |
Python3
# Python3 program of the# above approachÂ
# Function to add edge into# the graphdef addEdge(adj, u, v):Â
    adj[u].append(v)    adj[v].append(u)    return adjÂ
def DFSUtil(u, adj, visited, Â Â Â Â Â Â Â Â Â Â Â Â componentMin, componentMax):Â
    visited[u] = TrueÂ
    # Finding the maximum and    # minimum values in each component    componentMax = max(componentMax, u)    componentMin = min(componentMin, u)Â
    for i in range(len(adj[u])):        if (visited[adj[u][i]] == False):            visited, componentMax, componentMin = DFSUtil(                adj[u][i], adj, visited, componentMin,                 componentMax)                 return visited, componentMax, componentMinÂ
# Function for checking whether# the given graph is valid or notdef isValid(v):Â
    MAX = -1    ans = FalseÂ
    # Checking for intersecting intervals    for i in v:        if len(i) != 2:            continue                 # If intersection is found        if (i[0] <= MAX):Â
            # Graph is not valid            ans = TrueÂ
        MAX = max(MAX, i[1])Â
    return (True if ans == False else False)Â
# Function for the DFS Traversaldef DFS(adj, V):Â
    v = [[]]         # Traversing for every vertex    visited = [False for i in range(V + 1)]         for u in range(1, V + 1):        if (visited[u] == False):            componentMax = u            componentMin = uÂ
            visited, componentMax, componentMin = DFSUtil(                u, adj, visited, componentMin,                componentMax)Â
            # Storing maximum and minimum            # values of each component            v.append([componentMin, componentMax])Â
    check = isValid(v)Â
    if (check):        print('Yes')    else:        print('No')Â
    returnÂ
# Driver codeif __name__=="__main__":Â
    N = 4    K = 3Â
    adj = [[] for i in range(N + 1)]Â
    adj = addEdge(adj, 1, 2)    adj = addEdge(adj, 2, 3)    adj = addEdge(adj, 3, 4)Â
    DFS(adj, N)Â
# This code is contributed by rutvik_56 |
C#
// C# program of the // above approachusing System;using System.Collections;using System.Collections.Generic;  class GFG{      class pair{    public int first, second;    public pair(int first, int second)    {        this.first = first;        this.second = second;    }}  // Function to add edge into// the graphstatic void addEdge(ArrayList adj,                    int u, int v){    ((ArrayList)adj[u]).Add(v);    ((ArrayList)adj[v]).Add(u);}  static void DFSUtil(int u, ArrayList adj,                    bool[] visited,                    int componentMin,                    int componentMax){    visited[u] = true;      // Finding the maximum and    // minimum values in each component    componentMax = Math.Max(componentMax, u);    componentMin = Math.Min(componentMin, u);      for(int i = 0; i < ((ArrayList)adj[u]).Count; i++)        if (visited[(int)((ArrayList)adj[u])[i]] == false)            DFSUtil((int)((ArrayList)adj[u])[i], adj, visited,                    componentMin, componentMax);}  // Function for checking whether// the given graph is valid or notstatic bool isValid(ArrayList v){    int MAX = -1;    bool ans = false;          // Checking for intersecting intervals    foreach(pair i in v)    {                  // If intersection is found        if (i.first <= MAX)        {                          // Graph is not valid            ans = true;        }        MAX = Math.Max(MAX, i.second);    }    return (ans == false ? true : false);}  // Function for the DFS Traversalstatic void DFS(ArrayList adj,                 int V){   ArrayList v = new ArrayList();        // Traversing for every vertex   bool[] visited = new bool[V + 1];         for(int u = 1; u <= V; u++)    {        if (visited[u] == false)         {            int componentMax = u;            int componentMin = u;              DFSUtil(u, adj, visited,                    componentMin,                    componentMax);              // Storing maximum and minimum            // values of each component            v.Add(new pair(componentMin,                           componentMax));        }    }      bool check = isValid(v);      if (check)        Console.WriteLine("Yes");    else        Console.WriteLine("No");      return;}  // Driver codepublic static void Main(string[] args){    int N = 4;          ArrayList adj = new ArrayList();          for(int i = 0; i <= N + 1; i++)        adj.Add(new ArrayList());          addEdge(adj, 1, 2);    addEdge(adj, 2, 3);    addEdge(adj, 3, 4);          DFS(adj, N);}}Â
// This code is contributed by pratham76 |
Javascript
<script>Â
// JavaScript program of the // above approach      class pair{    constructor(first, second)    {        this.first = first;        this.second = second;    }}  // Function to add edge into// the graphfunction addEdge(adj,u, v){    (adj[u]).push(v);    (adj[v]).push(u);}  function DFSUtil(u, adj, visited, componentMin, componentMax){    visited[u] = true;      // Finding the maximum and    // minimum values in each component    componentMax = Math.max(componentMax, u);    componentMin = Math.min(componentMin, u);      for(var i = 0; i < (adj[u]).length; i++)        if (visited[(adj[u])[i]] == false)            DFSUtil((adj[u])[i], adj, visited,                    componentMin, componentMax);}  // Function for checking whether// the given graph is valid or notfunction isValid(v){    var MAX = -1;    var ans = false;          // Checking for intersecting intervals    for(var i of v)    {                  // If intersection is found        if (i.first <= MAX)        {                          // Graph is not valid            ans = true;        }        MAX = Math.max(MAX, i.second);    }    return (ans == false ? true : false);}  // Function for the DFS Traversalfunction DFS(adj, V){   var v = [];        // Traversing for every vertex   var visited = Array(V+1).fill(false);         for(var u = 1; u <= V; u++)    {        if (visited[u] == false)         {            var componentMax = u;            var componentMin = u;              DFSUtil(u, adj, visited,                    componentMin,                    componentMax);              // Storing maximum and minimum            // values of each component            v.push(new pair(componentMin,                           componentMax));        }    }      var check = isValid(v);      if (check)        document.write("Yes");    else        document.write("No");      return;}  // Driver codevar N = 4;  var adj = [];  for(var i = 0; i <= N + 1; i++)    adj.push(new Array());  addEdge(adj, 1, 2);addEdge(adj, 2, 3);addEdge(adj, 3, 4);  DFS(adj, N);Â
Â
</script> |
Yes
Â
Time Complexity: O(N + E)
Auxiliary Space: Â O(N)Â
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



