Check whether the number formed by concatenating two numbers is a perfect square or not

Given two numbers a and b and the task is to check whether the concatenation of a and b is a perfect square or not.
Examples:
Input: a = 1, b = 21
Output: Yes
121 = 11 × 11, is a perfect square.Input: a = 100, b = 100
Output: No
100100 is not a perfect square.
Approach: Initialize the number as strings initially and concatenate them. Convert the string to a number using Integer.valueOf() function. Once the string has been converted to a number, check if the number is a perfect square or not.
Below is the implementation of the above approach.
C++
// C++ program to check if the // concatenation of two numbers // is a perfect square or not #include <bits/stdc++.h> using namespace std; // Function to check if // the concatenation is // a perfect square void checkSquare(string s1, string s2) { // Function to convert // concatenation of // strings to a number int c = stoi(s1 + s2); // square root of number int d = sqrt(c); // check if it is a // perfect square if (d * d == c) { cout << "Yes"; } else { cout << "No"; } } // Driver Code int main() { string s1 = "12"; string s2 = "1"; checkSquare(s1, s2); return 0; } |
Java
// Java program to check if the // concatenation of two numbers // is a perfect square or not import java.lang.*; class GFG { // Function to check if the concatenation is // a perfect square static void checkSquare(String s1, String s2) { // Function to convert concatenation // of strings to a number int c = Integer.valueOf(s1 + s2); // square root of number int d = (int)Math.sqrt(c); // check if it is a perfect square if (d * d == c) { System.out.println("Yes"); } else { System.out.println("No"); } } // Driver Code public static void main(String[] args) { String s1 = "12"; String s2 = "1"; checkSquare(s1, s2); } } |
Python 3
# Python 3 program to check if the # concatenation of two numbers # is a perfect square or not import math # Function to check if the concatenation # is a perfect square def checkSquare(s1, s2): # Function to convert concatenation of # strings to a number c = int(s1 + s2) # square root of number d = math.sqrt(c) # check if it is a perfect square if (d * d == c) : print("Yes") else: print("No") # Driver Code if __name__ == "__main__": s1 = "12" s2 = "1" checkSquare(s1, s2) # This code is contributed by ita_c |
C#
// C# program to check if the // concatenation of two numbers // is a perfect square or not using System; public class GFG { // Function to check if the concatenation is // a perfect square static void checkSquare(String s1, String s2) { // Function to convert concatenation // of strings to a number int c = Convert.ToInt32(s1 + s2 );//int.ValueOf(s1 + s2); // square root of number int d = (int)Math.Sqrt(c); // check if it is a perfect square if (d * d == c) { Console.WriteLine("Yes"); } else { Console.WriteLine("No"); } } // Driver Code public static void Main() { String s1 = "12"; String s2 = "1"; checkSquare(s1, s2); } } // This code is contributed by PrinciRaj1992 |
PHP
<?php // PHP program to check if the // concatenation of two numbers // is a perfect square or not // Function to check if the // concatenation is a perfect square function checkSquare($s1, $s2) { // Function to convert concatenation // of strings to a number $c = $s1.$s2; // square root of number $d = sqrt($c); // check if it is a // perfect square if ($d * $d == $c) { echo "Yes"; } else { echo "No"; } } // Driver Code $s1 = "12"; $s2 = "1"; checkSquare($s1, $s2); // This code is contributed by Rajput-Ji ?> |
Javascript
<script> // Javascript program to check if the // concatenation of two numbers // is a perfect square or not // Function to check if the concatenation is // a perfect square function checkSquare(s1,s2) { // Function to convert concatenation // of strings to a number let c = parseInt(s1 + s2); // square root of number let d = Math.floor(Math.sqrt(c)); // check if it is a perfect square if (d * d == c) { document.write("Yes"); } else { document.write("No"); } } // Driver Code let s1 = "12"; let s2 = "1"; checkSquare(s1, s2); // This code is contributed by avanitrachhadiya2155 </script> |
Output:
Yes
Time complexity: log(c) as using inbuilt sqrt function
Auxiliary space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



