Count array elements that can be represented as sum of at least two consecutive array elements

Given an array A[] consisting of N integers from a range [1, N], the task is to calculate the count of array elements (non-distinct) that can be represented as the sum of two or more consecutive array elements.
Examples:
Input: a[] = {3, 1, 4, 1, 5, 9, 2, 6, 5}
Output: 5
Explanation:
The array elements satisfying the condition are:Â
4 = 3 + 1Â
5 = 1 + 4 or 4 + 1Â
9 = 3 + 1 + 4 + 1Â
6 = 1 + 5 or 1 + 4 + 1Â
5 = 1 + 4 or 4 + 1Input: a[] = {1, 1, 1, 1, 1}
Output: 0
Explanation:
No such array element exists that can be represented as the sum of two or more consecutive elements.
Naive Approach: Traverse the given array for each element, find the sum of all possible subarrays and check if sum of any of the subarrays becomes equal to that of the current element. Increase count if found to be true. Finally, print the count obtained.
C++
// C++ program for above approach#include <bits/stdc++.h>using namespace std;Â
// Function to find the number of// array elements that can be// represented as the sum of two// or more consecutive array elementsint countElements(int arr[], int n){Â
    int count = 0;Â
    for (int i = 0; i < n; i++) {        int sum = arr[i];        bool flag = false;Â
        for (int j = 0; j < i; j++) {            int reqSum = 0;            for (int k = j; k < i; k++) {                reqSum += arr[k];                if ((k - j + 1) >= 2 && reqSum == sum) {                    flag = true;                    count++;                    break;                }            }            if (flag)                break;        }Â
        for (int j = i + 1; j < n && flag == false; j++) {            int reqSum = 0;            for (int k = j; k < n; k++) {                reqSum += arr[k];                if ((k - j + 1) >= 2 && reqSum == sum) {                    flag = true;                    count++;                    break;                }            }            if (flag)                break;        }    }Â
    return count;}Â
// Driver Codeint main(){Â
    // Given array    int a[] = { 3, 1, 4, 1, 5, 9, 2, 6, 5 };    int N = sizeof(a) / sizeof(a[0]);Â
    // Function call    cout << countElements(a, N);} |
Java
/*package whatever //do not write package name here */import java.io.*;Â
class GFG{  // Function to find the number of  // array elements that can be  // represented as the sum of two  // or more consecutive array elements  public static int countElements(int arr[], int n)  {Â
    int count = 0;Â
    for (int i = 0; i < n; i++) {      int sum = arr[i];      boolean flag = false;Â
      for (int j = 0; j < i; j++) {        int reqSum = 0;        for (int k = j; k < i; k++) {          reqSum += arr[k];          if ((k - j + 1) >= 2 && reqSum == sum) {            flag = true;            count++;            break;          }        }        if (flag)          break;      }Â
      for (int j = i + 1; j < n && flag == false;           j++) {        int reqSum = 0;        for (int k = j; k < n; k++) {          reqSum += arr[k];          if ((k - j + 1) >= 2 && reqSum == sum) {            flag = true;            count++;            break;          }        }        if (flag)          break;      }    }Â
    return count;  }  public static void main(String[] args)  {    // Given array    int a[] = { 3, 1, 4, 1, 5, 9, 2, 6, 5 };    int N = a.length;Â
    // Function call    System.out.println(countElements(a, N));  }}Â
// This code is contributed by sourabhdalal0001. |
Python3
def countElements(arr, n):    count = 0    for i in range(n):        sum_ = arr[i]        flag = False        for j in range(i):            reqSum = 0            for k in range(j, i):                reqSum += arr[k]                if (k - j + 1) >= 2 and reqSum == sum_:                    flag = True                    count += 1                    break            if flag:                break        for j in range(i + 1, n):            reqSum = 0            for k in range(j, n):                reqSum += arr[k]                if (k - j + 1) >= 2 and reqSum == sum_:                    flag = True                    count += 1                    break            if flag:                break    return countÂ
# Given arrayarr = [3, 1, 4, 1, 5, 9, 2, 6, 5]n = len(arr)Â
# Function callprint(countElements(arr, n)) |
C#
using System;Â
class GFG {Â
  // Function to find the number of  // array elements that can be  // represented as the sum of two  // or more consecutive array elements  public static int countElements(int[] arr, int n)  {    int count = 0;Â
    for (int i = 0; i < n; i++) {      int sum = arr[i];      bool flag = false;Â
      for (int j = 0; j < i; j++) {        int reqSum = 0;        for (int k = j; k < i; k++) {          reqSum += arr[k];          if ((k - j + 1) >= 2 && reqSum == sum) {            flag = true;            count++;            break;          }        }        if (flag)          break;      }Â
      for (int j = i + 1; j < n && flag == false;           j++) {        int reqSum = 0;        for (int k = j; k < n; k++) {          reqSum += arr[k];          if ((k - j + 1) >= 2 && reqSum == sum) {            flag = true;            count++;            break;          }        }        if (flag)          break;      }    }Â
    return count;  }  public static void Main(string[] args)  {    // Given array    int[] a = { 3, 1, 4, 1, 5, 9, 2, 6, 5 };    int N = a.Length;Â
    // Function call    Console.WriteLine(countElements(a, N));  }}Â
// This code is contributed by divya_p123. |
Javascript
// Javascript program for above approachÂ
// Function to find the number of// array elements that can be// represented as the sum of two// or more consecutive array elementsfunction countElements(arr, n){Â
    let count = 0;Â
    for (let i = 0; i < n; i++) {        let sum = arr[i];        let flag = false;Â
        for (let j = 0; j < i; j++) {            let reqSum = 0;            for (let k = j; k < i; k++) {                reqSum += arr[k];                if ((k - j + 1) >= 2 && reqSum == sum) {                    flag = true;                    count++;                    break;                }            }            if (flag)                break;        }Â
        for (let j = i + 1; j < n && flag == false; j++) {            let reqSum = 0;            for (let k = j; k < n; k++) {                reqSum += arr[k];                if ((k - j + 1) >= 2 && reqSum == sum) {                    flag = true;                    count++;                    break;                }            }            if (flag)                break;        }    }Â
    return count;}Â
// Driver Code// Given arraylet a = [3, 1, 4, 1, 5, 9, 2, 6, 5 ];let N = a.length;Â
// Function callconsole.log(countElements(a, N)); |
5
Time Complexity: O(n3)Â
Auxiliary Space: O(1)
Efficient Approach: Follow the steps below to optimize the above approach:
- Initialize an array cnt[] to store the number of occurrences of each array element.
- Iterate over all subarrays of at least length 2 maintaining the sum of the current subarray sum.
- If the current sum does not exceed N, then add cnt[sum] to the answer and set cnt[sum]=0 to prevent counting the same elements several times.
- Finally, print the sum obtained.
Below is the implementation of the above approach:
C++
// C++ program for above approach #include <bits/stdc++.h>using namespace std;Â
// Function to find the number of// array elements that can be // represented as the sum of two // or more consecutive array elementsint countElements(int a[], int n){         // Stores the frequencies    // of array elements    int cnt[n + 1] = {0};    memset(cnt, 0, sizeof(cnt));         // Stores required count    int ans = 0;Â
    // Update frequency of    // each array element    for(int i = 0; i < n; i++)    {        ++cnt[a[i]];    }         // Find sum of all subarrays    for(int l = 0; l < n; ++l)    {        int sum = 0;Â
        for(int r = l; r < n; ++r)        {            sum += a[r];Â
            if (l == r)                continue;Â
            if (sum <= n)            {                                 // Increment ans by cnt[sum]                ans += cnt[sum];Â
                // Reset cnt[sum] by 0                cnt[sum] = 0;            }        }    }Â
    // Return ans    return ans;}Â
// Driver Codeint main(){         // Given array    int a[] = { 1, 1, 1, 1, 1 };    int N = sizeof(a) / sizeof(a[0]);Â
    // Function call    cout << countElements(a, N);}Â
// This code is contributed by Amit Katiyar |
Java
// Java Program for above approachÂ
import java.util.*;class GFG {Â
    // Function to find the number of array    // elements that can be represented as the sum    // of two or more consecutive array elements    static int countElements(int[] a, int n)    {        // Stores the frequencies        // of array elements        int[] cnt = new int[n + 1];Â
        // Stores required count        int ans = 0;Â
        // Update frequency of        // each array element        for (int k : a) {            ++cnt[k];        }Â
        // Find sum of all subarrays        for (int l = 0; l < n; ++l) {Â
            int sum = 0;Â
            for (int r = l; r < n; ++r) {                sum += a[r];Â
                if (l == r)                    continue;Â
                if (sum <= n) {Â
                    // Increment ans by cnt[sum]                    ans += cnt[sum];Â
                    // Reset cnt[sum] by 0                    cnt[sum] = 0;                }            }        }Â
        // Return ans        return ans;    }Â
    // Driver Code    public static void main(String[] args)    {        // Given array        int[] a = { 1, 1, 1, 1, 1 };Â
        // Function call        System.out.println(            countElements(a, a.length));    }} |
Python3
# Python3 program for above approachÂ
# Function to find the number of array# elements that can be represented as the sum# of two or more consecutive array elementsdef countElements(a, n):         # Stores the frequencies    # of array elements    cnt = [0] * (n + 1)Â
    # Stores required count    ans = 0Â
    # Update frequency of    # each array element    for k in a:        cnt[k] += 1Â
    # Find sum of all subarrays    for l in range(n):        sum = 0Â
        for r in range(l, n):            sum += a[r]Â
            if (l == r):                continue            if (sum <= n):Â
                # Increment ans by cnt[sum]                ans += cnt[sum]Â
                # Reset cnt[sum] by 0                cnt[sum] = 0Â
    # Return ans    return ansÂ
# Driver Codeif __name__ == '__main__':Â
    # Given array    a = [ 1, 1, 1, 1, 1 ]Â
    # Function call    print(countElements(a, len(a)))Â
# This code is contributed by mohit kumar 29 |
C#
// C# program for above approachusing System;Â
class GFG{Â
// Function to find the number of array// elements that can be represented as the sum// of two or more consecutive array elementsstatic int countElements(int[] a, int n){         // Stores the frequencies    // of array elements    int[] cnt = new int[n + 1];Â
    // Stores required count    int ans = 0;Â
    // Update frequency of    // each array element    foreach(int k in a)     {        ++cnt[k];    }Â
    // Find sum of all subarrays    for(int l = 0; l < n; ++l)    {        int sum = 0;Â
        for(int r = l; r < n; ++r)        {            sum += a[r];            if (l == r)                continue;Â
            if (sum <= n)            {                                 // Increment ans by cnt[sum]                ans += cnt[sum];Â
                // Reset cnt[sum] by 0                cnt[sum] = 0;            }        }    }Â
    // Return ans    return ans;}Â
// Driver Codepublic static void Main(String[] args){         // Given array    int[] a = { 1, 1, 1, 1, 1 };Â
    // Function call    Console.WriteLine(countElements(a, a.Length));}}Â
// This code is contributed by Amit Katiyar |
Javascript
<script>Â
// Javascript program for above approachÂ
// Function to find the number of array// elements that can be represented as the sum// of two or more consecutive array elementsfunction countElements(a, n){         // Stores the frequencies    // of array elements    var cnt = Array(n + 1).fill(0);Â
    // Stores required count    var ans = 0;Â
    // Update frequency of    // each array element    for(k = 0; k < n; k++)    {        cnt[a[k]]++;    }Â
    // Find sum of all subarrays    for(l = 0; l < n; ++l)    {        var sum = 0;Â
        for(r = l; r < n; ++r)        {            sum += a[r];Â
            if (l == r)                continue;Â
            if (sum <= n)            {                                 // Increment ans by cnt[sum]                ans += cnt[sum];Â
                // Reset cnt[sum] by 0                cnt[sum] = 0;            }        }    }Â
    // Return ans    return ans;}Â
// Driver CodeÂ
// Given arrayvar a = [ 1, 1, 1, 1, 1 ];Â
// Function calldocument.write(countElements(a, a.length));Â
// This code is contributed by todaysgaurav   </script> |
0
Time Complexity: O(N2)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



