Count of distinct Strings possible by swapping prefixes of pairs of Strings from the Array

Given an array string[] consisting of N numeric strings of length M, the task is to find the number of distinct strings that can be generated by selecting any two strings, say i and j from the array and swap all possible prefixes between them.
Note: Since the answer can be very large, print modulo 1000000007.
Examples:
Input: N = 2 M = 3 string[] = {“112”, “211”}
Output: 4
Explanation:
Swapping “1” and “2” between the strings generates “212” and “111“.
Swapping “11” and “21” between the strings generates “212” and “111”.
Swapping “112” and “211” between the strings generates “211” and “112“.
Therefore, 4 distinct strings are generated.Input: N = 4 M = 5 string[] = {“12121”, “23545”, “11111”, “71261”}
Output: 216
Approach: Considering a string s of the form s1s2s3s4…sm, where s1 is the first letter of any of the strings in the array, s2 is the second letter of any of the strings, and so on, the answer to the problem is the product of count(i) where count(i) is the count of different letters placed at same index in the given strings.
Below is the implementation of the above approach:
C++
// C++ program to implement// the above approach#include <bits/stdc++.h> using namespace std; int mod = 1000000007;// Function to count the distinct strings// possible after swapping the prefixes// between two possible strings of the arraylong countS(string str[],int n, int m){ // Stores the count of unique // characters for each index unordered_map<int, unordered_set<char>> counts; for(int i = 0; i < n; i++) { // Store current string string s = str[i]; for(int j = 0; j < m; j++) { counts[j].insert(s[j]); } } // Stores the total number of // distinct strings possible long result = 1; for(auto index : counts) { result = (result * counts[index.first].size()) % mod; } // Return the answer return result;}// Driver Codeint main(){ string str[] = { "112", "211" }; int N = 2, M = 3; cout << countS(str, N, M); return 0;} // This code is contributed by rutvik_56 |
Java
// Java Program to implement// the above approachimport java.util.*;import java.io.*;public class Main { static int mod = 1000000007; // Function to count the distinct strings // possible after swapping the prefixes // between two possible strings of the array public static long countS(String str[], int n, int m) { // Stores the count of unique // characters for each index Map<Integer, Set<Character> > counts = new HashMap<>(); for (int i = 0; i < m; i++) { counts.put(i, new HashSet<>()); } for (int i = 0; i < n; i++) { // Store current string String s = str[i]; for (int j = 0; j < m; j++) { counts.get(j).add(s.charAt(j)); } } // Stores the total number of // distinct strings possible long result = 1; for (int index : counts.keySet()) result = (result * counts.get(index).size()) % mod; // Return the answer return result; } // Driver Code public static void main(String[] args) { String str[] = { "112", "211" }; int N = 2, M = 3; System.out.println(countS(str, N, M)); }} |
Python3
# Python3 program to implement# the above approachfrom collections import defaultdictmod = 1000000007# Function to count the distinct strings# possible after swapping the prefixes# between two possible strings of the arraydef countS(string: list, n: int, m: int) -> int: # Stores the count of unique # characters for each index counts = defaultdict(lambda: set()) for i in range(n): # Store current string s = string[i] for j in range(m): counts[j].add(s[j]) # Stores the total number of # distinct strings possible result = 1 for index in counts: result = (result * len(counts[index])) % mod # Return the answer return result# Driver Codeif __name__ == "__main__": string = [ "112", "211" ] N = 2 M = 3 print(countS(string, N, M))# This code is contributed by sanjeev2552 |
C#
// C# Program to implement// the above approachusing System;using System.Collections.Generic;class GFG{static int mod = 1000000007;// Function to count the distinct strings// possible after swapping the prefixes// between two possible strings of the arraypublic static long countS(String []str, int n, int m){ // Stores the count of unique // characters for each index Dictionary<int, HashSet<char> > counts = new Dictionary<int, HashSet<char>>(); for (int i = 0; i < m; i++) { counts.Add(i, new HashSet<char>()); } for (int i = 0; i < n; i++) { // Store current string String s = str[i]; for (int j = 0; j < m; j++) { counts[j].Add(s[j]); } } // Stores the total number of // distinct strings possible long result = 1; foreach (int index in counts.Keys) result = (result * counts[index].Count) % mod; // Return the answer return result;}// Driver Codepublic static void Main(String[] args){ String []str = { "112", "211" }; int N = 2, M = 3; Console.WriteLine(countS(str, N, M));}}// This code is contributed by Rajput-Ji |
Javascript
// Javascript Program to implement// the above approachlet mod = 1000000007;// Function to count the distinct strings// possible after swapping the prefixes// between two possible strings of the arrayfunction countS(str, n, m) { // Stores the count of unique // characters for each index let counts = new Map(); for (let i = 0; i < m; i++) { counts.set(i, new Set()); } for (let i = 0; i < n; i++) { // Store current string let s = str[i]; for (let j = 0; j < m; j++) { let temp = counts.get(j); temp.add(s[j]) } } // Stores the total number of // distinct strings possible let result = 1; for (let index of counts.keys()) result = (result * counts.get(index).size) % mod; // Return the answer return result;}// Driver Codelet str = ["112", "211"];let N = 2, M = 3;console.log(countS(str, N, M));// This code is contributed by saurabh_jaiswal. |
4
Time Complexity: O(N * M)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



