Count of non-overlapping sub-strings “101” and “010” in the given binary string

Given binary string str, the task is to find the count of non-overlapping sub-strings of either the form “010” or “101”.

Examples: 

Input: str = “10101010101” 
Output:
str[0..2] = “101” 
str[3..5] = “010” 
str[6..8] = “101”
Input: str = “111111111111110” 
Output:

Approach: Initialize count = 0 and for every index i in the given string check whether the sub-string of size 3 starting at the current index i matches either with “010” or “101”. If it’s a match then update count = count + 1 and i = i + 3 (to avoid overlapping of sub-strings) else increment i by 1.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function to return the count of
// required non-overlapping sub-strings
int countSubStr(string &s, int n)
{
 
    // To store the required count
    int count = 0;
    for (int i = 0; i < n - 2;) {
 
        // If "010" matches the sub-string
        // starting at current index i
        if (s[i] == '0' && s[i + 1] == '1'
            && s[i + 2] == '0') {
            count++;
            i += 3;
        }
 
        // If "101" matches the sub-string
        // starting at current index i
        else if (s[i] == '1' && s[i + 1] == '0'
                 && s[i + 2] == '1') {
            count++;
            i += 3;
        }
        else {
            i++;
        }
    }
 
    return count;
}
 
// Driver code
int main()
{
    string s = "10101010101";
    int n = s.length();
 
    cout << countSubStr(s, n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
    // Function to return the count of
    // required non-overlapping sub-strings
    static int countSubStr(char[] s, int n)
    {
 
        // To store the required count
        int count = 0;
        for (int i = 0; i < n - 2😉
        {
 
            // If "010" matches the sub-string
            // starting at current index i
            if (s[i] == '0' && s[i + 1] == '1'
                    && s[i + 2] == '0')
            {
                count++;
                i += 3;
            }
            // If "101" matches the sub-string
            // starting at current index i
            else if (s[i] == '1' && s[i + 1] == '0'
                    && s[i + 2] == '1')
            {
                count++;
                i += 3;
            }
            else
             
            {
                i++;
            }
        }
 
        return count;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        char[] s = "10101010101".toCharArray();
        int n = s.length;
 
        System.out.println(countSubStr(s, n));
    }
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the approach
 
# Function to return the count of
# required non-overlapping sub-strings
def countSubStr(s, n) :
 
    # To store the required count
    count = 0;
    i = 0
     
    while i < (n-2) :
 
        # If "010" matches the sub-string
        # starting at current index i
        if (s[i] == '0' and s[i + 1] == '1'and s[i + 2] == '0') :
            count += 1;
            i += 3;
 
        # If "101" matches the sub-string
        # starting at current index i
        elif (s[i] == '1' and s[i + 1] == '0'and s[i + 2] == '1') :
            count += 1;
            i += 3;
         
        else :
            i += 1;
 
    return count;
 
 
# Driver code
if __name__ == "__main__" :
 
    s = "10101010101";
    n = len(s);
 
    print(countSubStr(s, n));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
     
class GFG
{
    // Function to return the count of
    // required non-overlapping sub-strings
    static int countSubStr(char[] s, int n)
    {
 
        // To store the required count
        int count = 0;
        for (int i = 0; i < n - 2;)
        {
 
            // If "010" matches the sub-string
            // starting at current index i
            if (s[i] == '0' &&
                s[i + 1] == '1' &&
                s[i + 2] == '0')
            {
                count++;
                i += 3;
            }
             
            // If "101" matches the sub-string
            // starting at current index i
            else if (s[i] == '1' &&
                     s[i + 1] == '0' &&
                     s[i + 2] == '1')
            {
                count++;
                i += 3;
            }
            else
            {
                i++;
            }
        }
 
        return count;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        char[] s = "10101010101".ToCharArray();
        int n = s.Length;
 
        Console.WriteLine(countSubStr(s, n));
    }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// javascript implementation of the approach
 
    // Function to return the count of
    // required non-overlapping sub-strings
    function countSubStr( s , n) {
 
        // To store the required count
        var count = 0;
        for (i = 0; i < n - 2;) {
 
            // If "010" matches the sub-string
            // starting at current index i
            if (s[i] == '0' && s[i + 1] == '1' && s[i + 2] == '0') {
                count++;
                i += 3;
            }
            // If "101" matches the sub-string
            // starting at current index i
            else if (s[i] == '1' && s[i + 1] == '0' && s[i + 2] == '1') {
                count++;
                i += 3;
            } else
 
            {
                i++;
            }
        }
 
        return count;
    }
 
    // Driver code
     
        var s = "10101010101";
        var n = s.length;
 
        document.write(countSubStr(s, n));
 
// This code contributed by Rajput-Ji
</script>


Output: 

3

 

Time Complexity: O(n), where n is the length of the string.
Auxiliary Space: O(1) as constant extra space is used

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button