Count pairs of elements such that number of set bits in their OR is B[i]

Given two arrays A[] and B[] of N elements each. The task is to find the number of index pairs (i, j) such that i ? j and F(A[i] | A[j]) = B[j] where F(X) is the count of set bits in the binary representation of X.
Examples
Input: A[] = {5, 3, 2, 4, 6, 1}, B[] = {2, 2, 1, 4, 2, 3}
Output: 7
All possible pairs are (5, 5), (3, 3), (2, 2),
(2, 6), (4, 6), (6, 6) and (6, 1).
Input: A[] = {4, 3, 5, 6, 7}, B[] = {1, 3, 2, 4, 5}
Output: 4
Approach: Iterate through all the possible pairs (i, j) and check the count of set bits in their OR value. If the count is equal to B[j] then increment the count.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to return the count of pairs// which satisfy the given conditionint solve(int A[], int B[], int n){ int cnt = 0; for (int i = 0; i < n; i++) for (int j = i; j < n; j++) // Check if the count of set bits // in the OR value is B[j] if (__builtin_popcount(A[i] | A[j]) == B[j]) { cnt++; } return cnt;}// Driver codeint main(){ int A[] = { 5, 3, 2, 4, 6, 1 }; int B[] = { 2, 2, 1, 4, 2, 3 }; int size = sizeof(A) / sizeof(A[0]); cout << solve(A, B, size); return 0;} |
Java
// Java implementation of the approachclass GFG {// Function to return the count of pairs// which satisfy the given conditionstatic int solve(int A[], int B[], int n){ int cnt = 0; for (int i = 0; i < n; i++) for (int j = i; j < n; j++) // Check if the count of set bits // in the OR value is B[j] if (Integer.bitCount(A[i] | A[j]) == B[j]) { cnt++; } return cnt;}// Driver codepublic static void main(String args[]){ int A[] = { 5, 3, 2, 4, 6, 1 }; int B[] = { 2, 2, 1, 4, 2, 3 }; int size = A.length; System.out.println(solve(A, B, size));}}// This code is contributed by 29AjayKumar |
Python3
# Python3 implementation of the approach # Function to return the count of pairs # which satisfy the given condition def solve(A, B, n) : cnt = 0; for i in range(n) : for j in range(i, n) : # Check if the count of set bits # in the OR value is B[j] if (bin(A[i] | A[j]).count('1') == B[j]) : cnt += 1; return cnt # Driver code if __name__ == "__main__" : A = [ 5, 3, 2, 4, 6, 1 ]; B = [ 2, 2, 1, 4, 2, 3 ]; size = len(A); print(solve(A, B, size)); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System;class GFG {// Function to return the count of pairs// which satisfy the given conditionstatic int solve(int []A, int []B, int n){ int cnt = 0; for (int i = 0; i < n; i++) for (int j = i; j < n; j++) // Check if the count of set bits // in the OR value is B[j] if (bitCount(A[i] | A[j]) == B[j]) { cnt++; } return cnt;}static int bitCount(long x){ // To store the count // of set bits int setBits = 0; while (x != 0) { x = x & (x - 1); setBits++; } return setBits;}// Driver codepublic static void Main(String []args){ int []A = { 5, 3, 2, 4, 6, 1 }; int []B = { 2, 2, 1, 4, 2, 3 }; int size = A.Length; Console.WriteLine(solve(A, B, size));}}/* This code is contributed by PrinciRaj1992 */ |
Javascript
<script>// JavaScript implementation of the approach// Function to return the count of pairs// which satisfy the given conditionfunction solve(A,B,n){ let cnt = 0; for (let i = 0; i < n; i++) for (let j = i; j < n; j++) // Check if the count of set bits // in the OR value is B[j] if (bitCount(A[i] | A[j]) == B[j]) { cnt++; } return cnt;}function bitCount(x){ // To store the count // of set bits let setBits = 0; while (x != 0) { x = x & (x - 1); setBits++; } return setBits;}// Driver codelet A=[5, 3, 2, 4, 6, 1 ];let B=[2, 2, 1, 4, 2, 3 ];let size = A.length;document.write(solve(A, B, size));// This code is contributed by rag2127</script> |
Output:
7
Time Complexity: O(N2)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



