Find n-th term of series 3, 9, 21, 41, 71…

Given a mathematical series as 3, 9, 21, 41, 71… For a given integer n, you have to find the nth number of this series.
Examples :
Input : n = 4 Output : 41 Input : n = 2 Output : 9
Our first task for solving this problem is to crack the series. If you will gave a closer look on the series, for a general n-th term the value will be (?n2)+(?n)+1, where
- (?n2): is sum of squares of first n-natural numbers.
- (?n): is sum of first n-natural numbers.
- 1 is a simple constant value.
So, for calculating any n-th term of given series say f(n) we have:
f(n) = (?n2)+(?n)+1
= ( ((n*(n+1)*(2n+1))/6) + (n*(n+1)/2) + 1
= (n3+ 3n2 + 2n + 3 ) /3
C++
// Program to calculate // nth term of a series#include <bits/stdc++.h>using namespace std;// func for calualtionint seriesFunc(int n){ // for summation of square // of first n-natural nos. int sumSquare = (n * (n + 1) * (2 * n + 1)) / 6; // summation of first n natural nos. int sumNatural = (n * (n + 1) / 2); // return result return (sumSquare + sumNatural + 1);}// Driver Codeint main(){ int n = 8; cout << seriesFunc(n) << endl; n = 13; cout << seriesFunc(13); return 0;} |
Java
// Java Program to calculate // nth term of a seriesimport java.io.*;class GFG { // func for calualtion static int seriesFunc(int n) { // for summation of square // of first n-natural nos. int sumSquare = (n * (n + 1) * (2 * n + 1)) / 6; // summation of first n natural nos. int sumNatural = (n * (n + 1) / 2); // return result return (sumSquare + sumNatural + 1); } // Driver Code public static void main(String args[]) { int n = 8; System.out.println(seriesFunc(n)); n = 13; System.out.println(seriesFunc(13)); }}// This code is contributed by Nikita Tiwari. |
Python3
# Program to calculate # nth term of a series# func for calualtiondef seriesFunc(n): # for summation of square # of first n-natural nos. sumSquare = (n * (n + 1) * (2 * n + 1)) / 6 # summation of first n # natural nos. sumNatural = (n * (n + 1) / 2) # return result return (sumSquare + sumNatural + 1)# Driver Coden = 8print (int(seriesFunc(n)))n = 13print (int(seriesFunc(n)))# This is code is contributed by Shreyanshi Arun. |
C#
// C# program to calculate // nth term of a seriesusing System;class GFG { // Function for calualtion static int seriesFunc(int n) { // For summation of square // of first n-natural nos. int sumSquare = (n * (n + 1) * (2 * n + 1)) / 6; // summation of first n natural nos. int sumNatural = (n * (n + 1) / 2); // return result return (sumSquare + sumNatural + 1); } // Driver Code public static void Main() { int n = 8; Console.WriteLine(seriesFunc(n)); n = 13; Console.WriteLine(seriesFunc(13)); }}// This code is contributed by vt_m. |
PHP
<?php// Program to calculate // nth term of a series// func for calualtionfunction seriesFunc($n){ // for summation of square // of first n-natural nos. $sumSquare = ($n * ($n + 1) * (2 * $n + 1)) / 6; // summation of first n natural nos. $sumNatural = ($n * ($n + 1) / 2); // return result return ($sumSquare + $sumNatural + 1);}// Driver Code$n = 8; echo(seriesFunc($n) . "\n"); $n = 13;echo(seriesFunc($n) . "\n");// This code is contributed by Ajit.?> |
Javascript
<script>// JavaScript Program to calculate // nth term of a series // func for calualtion function seriesFunc(n) { // for summation of square // of first n-natural nos. let sumSquare = (n * (n + 1) * (2 * n + 1)) / 6; // summation of first n natural nos. let sumNatural = (n * (n + 1) / 2); // return result return (sumSquare + sumNatural + 1); } // Driver code let n = 8; document.write(seriesFunc(n) + "<br/>"); n = 13; document.write(seriesFunc(13));</script> |
Output :
241 911
Time Complexity: O(1) since constant operations are performed
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



