Find Nth term of the series 1, 6, 18, 40, 75, ….

Given a number n, the task is to find the n-th term in series 1, 6, 18, 40, 75, …
Example: 
 

Input: N = 2
Output: 6
Explanation:
2nd term = (2^2*(2+1))/2
         = 6

Input: N = 5
Output: 75
Explanation:
5th term = (5^2*(5+1))/2
         = 75

Approach: 
 

Nth term = (N^2*(N+1))/2 
 

Implementation of the above approach is given below: 
 

C++




// CPP code to generate
// 'Nth' term of this sequence
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to generate a fixed number
int nthTerm(int N)
{
    int nth = 0;
 
    //(N^2*(N+1))/2
    nth = (N * N * (N + 1)) / 2;
 
    return nth;
}
 
// Driver Method
int main()
{
    int N = 5;
 
    cout << nthTerm(N) << endl;
 
    return 0;
}


Java




// Java code to generate
// 'Nth' term of this sequence
 
class GFG {
 
    // Function to generate a fixed number
    public static int nthTerm(int N)
    {
        int nth = 0;
 
        //(N^2*(N+1))/2
        nth = (N * N * (N + 1)) / 2;
 
        return nth;
    }
 
    // Driver Method
    public static void main(String[] args)
    {
        int N = 5;
 
        System.out.println(nthTerm(N));
    }
    // This code is contributed by 29AjayKumar
}


Python3




# python program to find out'Nth' term of this sequence
 
# Function to generate a fixed number
def nthTerm(N):
    nth = 0
    nth = (N * N * (N + 1))//2
    return nth
 
# Driver code
N = 5
print(nthTerm(N))
 
# This code is contributed by Shrikant13


C#




// C# code to generate
// 'Nth' term of this sequence
 
using System;
public class GFG {
 
    // Function to generate a fixed number
    public static int nthTerm(int N)
    {
        int nth = 0;
 
        //(N^2*(N+1))/2
        nth = (N * N * (N + 1)) / 2;
 
        return nth;
    }
 
    // Driver Method
    public static void Main(string[] args)
    {
        int N = 5;
 
        Console.WriteLine(nthTerm(N));
    }
}
 
// This code is contributed by Shrikant13


PHP




<?php
// PHP code to generate
// 'Nth' term of this sequence
 
// Function to generate a fixed number
function nthTerm($N)
{
    $nth = 0;
 
    // (N^2*(N+1))/2
    $nth = ($N * $N * ($N + 1)) / 2;
 
    return $nth;
}
 
// Driver Code
$N = 5;
 
echo nthTerm($N);
 
// This code is contributed
// by chandan_jnu
?>


Javascript




<script>
// Javascript code to generate
// 'Nth' term of this sequence
 
// Function to generate a fixed number
function nthTerm(N)
{
    let nth = 0;
 
    //(N^2*(N+1))/2
    nth = parseInt((N * N * (N + 1)) / 2);
 
    return nth;
}
 
// Driver Method
let N = 5;
 
document.write(nthTerm(N));
 
// This code is contributed by subham348.
</script>


Output: 

75

 

Time Complexity: O(1)

Auxiliary Space: O(1), since no extra space has been taken.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button