Find number of cavities in a matrix

Count the number of the cavity in the 2d matrix, a cavity is defined as all the surrounding numbers are greater than the mid number.
Examples:
Input : a = {{4, 5, 6}, {7, 1, 5}, {4, 5, 6}}
Output : 1Input : a = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}
Output : 1
Source: Ola Interview Experience Set 13
Below is the implementation of above approach.
C++
// C++ program find number of cavities in a matrix#include <bits/stdc++.h>using namespace std;const int MAX = 100;int countCavities(int a[][MAX], int n){ int A[n + 2][n + 2]; int coun = 0; // form another matrix with one extra layer of // boundary elements. // Boundary elements will contain max value. for (int i = 0; i < n + 2; i++) { for (int j = 0; j < n + 2; j++) { if ((i == 0) || (j == 0) || (i == n + 1) || (j == n + 1)) A[i][j] = INT_MAX; else A[i][j] = a[i - 1][j - 1]; } } // Check for cavities in the modified matrix for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { // check for all directions if ((A[i][j] < A[i - 1][j]) && (A[i][j] < A[i + 1][j]) && (A[i][j] < A[i][j - 1]) && (A[i][j] < A[i][j + 1]) && (A[i][j] < A[i - 1][j - 1]) && (A[i][j] < A[i + 1][j + 1]) && (A[i][j] < A[i - 1][j + 1]) && (A[i][j] < A[i + 1][j - 1])) coun++; } } return coun;}int main(){ int a[][MAX] = { { 4, 5, 6 }, { 7, 1, 5 }, { 4, 5, 6 } }; int n = 3; cout << countCavities(a, n); return 0;} |
Java
// Java program find number of cavities in a matrixclass GfG { static int MAX = 100; static int countCavities(int a[][], int n) { int A[][] = new int[n + 2][n + 2]; int coun = 0; // form another matrix with one extra layer of // boundary elements. // Boundary elements will contain max value. for (int i = 0; i < n + 2; i++) { for (int j = 0; j < n + 2; j++) { if ((i == 0) || (j == 0) || (i == n + 1) || (j == n + 1)) A[i][j] = Integer.MAX_VALUE; else A[i][j] = a[i - 1][j - 1]; } } // Check for cavities in the modified matrix for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { // check for all directions if ((A[i][j] < A[i - 1][j]) && (A[i][j] < A[i + 1][j]) && (A[i][j] < A[i][j - 1]) && (A[i][j] < A[i][j + 1]) && (A[i][j] < A[i - 1][j - 1]) && (A[i][j] < A[i + 1][j + 1]) && (A[i][j] < A[i - 1][j + 1]) && (A[i][j] < A[i + 1][j - 1])) coun++; } } return coun; } public static void main(String[] args) { int a[][] = new int[][]{{ 4, 5, 6 }, { 7, 1, 5 }, { 4, 5, 6 }}; int n = 3; System.out.println(countCavities(a, n)); }} |
Python3
# Python program find number of cavities in a matriximport sysMAX = 100def countCavities(a, n): A = [[0 for i in range(n + 2)] for j in range(n + 2)] count = 0 # form another matrix with one extra layer of # boundary elements. # Boundary elements will contain max value. for i in range(n+2): for j in range(n+2): if ((i == 0) or (j == 0) or (i == n + 1) or (j == n + 1)): A[i][j] = sys.maxsize else: A[i][j] = a[i - 1][j - 1] # Check for cavities in the modified matrix for i in range(1,n): for j in range(1,n): # check for all directions if ((A[i][j] < A[i - 1][j]) and (A[i][j] < A[i + 1][j]) and (A[i][j] < A[i][j - 1]) and (A[i][j] < A[i][j + 1]) and (A[i][j] < A[i - 1][j - 1]) and (A[i][j] < A[i + 1][j + 1]) and (A[i][j] < A[i - 1][j + 1]) and (A[i][j] < A[i + 1][j - 1])): count += 1 return count# driver programa = [ [ 4, 5, 6 ], [ 7, 1, 5 ], [ 4, 5, 6 ] ]n = 3print(countCavities(a, n))# This code is contributed by shinjanpatra |
C#
// C# program find number of cavities in a matrixusing System;class GfG { static int MAX = 100; static int countCavities(int [,]a, int n) { int [,]A = new int[n + 2, n + 2]; int coun = 0; // form another matrix with one extra layer of // boundary elements. // Boundary elements will contain max value. for (int i = 0; i < n + 2; i++) { for (int j = 0; j < n + 2; j++) { if ((i == 0) || (j == 0) || (i == n + 1) || (j == n + 1)) A[i, j] = int.MaxValue; else A[i, j] = a[i - 1, j - 1]; } } // Check for cavities in the modified matrix for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { // check for all directions if ((A[i, j] < A[i - 1, j]) && (A[i, j] < A[i + 1, j]) && (A[i, j] < A[i, j - 1]) && (A[i, j] < A[i, j + 1]) && (A[i, j] < A[i - 1, j - 1]) && (A[i, j] < A[i + 1, j + 1]) && (A[i, j] < A[i - 1, j + 1]) && (A[i, j] < A[i + 1, j - 1])) coun++; } } return coun; } public static void Main(String[] args) { int [,]a = new int[,]{{ 4, 5, 6 }, { 7, 1, 5 }, { 4, 5, 6 }}; int n = 3; Console.WriteLine(countCavities(a, n)); }}// This code contributed by Rajput-Ji |
PHP
<?php// PHP program find number of cavities// in a matrixfunction countCavities($a, $n) { $A = array(); $coun = 0; // form another matrix with one extra // layer of boundary elements. // Boundary elements will contain // max value. for ($i = 0; $i < $n + 2; $i++) { for ($j = 0; $j < $n + 2; $j++) { if (($i == 0) || ($j == 0) || ($i == $n + 1) || ($j == $n + 1)) $A[$i][$j] = 100; else $A[$i][$j] = $a[$i - 1][$j - 1]; } } // Check for cavities in the modified matrix for ($i = 1; $i <= $n; $i++) { for ($j = 1; $j <= $n; $j++) { // check for all directions if (($A[$i][$j] < $A[$i - 1][$j]) && ($A[$i][$j] < $A[$i + 1][$j]) && ($A[$i][$j] < $A[$i][$j - 1]) && ($A[$i][$j] < $A[$i][$j + 1]) && ($A[$i][$j] < $A[$i - 1][$j - 1]) && ($A[$i][$j] < $A[$i + 1][$j + 1]) && ($A[$i][$j] < $A[$i - 1][$j + 1]) && ($A[$i][$j] < $A[$i + 1][$j - 1])) $coun++; } } return $coun; } // Driver Code$a = array(array(4, 5, 6), array(7, 1, 5), array(4, 5, 6)); $n = 3; echo(countCavities($a, $n)); // This code is contributed by Code_Mech |
Javascript
<script>// Javascript program find number of cavities in a matrixMAX = 100;function countCavities( a, n){ var A = new Array(n+2).fill(0).map(() => new Array(n+2).fill(0)); var coun = 0; // form another matrix with one extra layer of // boundary elements. // Boundary elements will contain max value. for (var i = 0; i < n + 2; i++) { for (var j = 0; j < n + 2; j++) { if ((i == 0) || (j == 0) || (i == n + 1) || (j == n + 1)) A[i][j] = Number.MAX_VALUE; else A[i][j] = a[i - 1][j - 1]; } } // Check for cavities in the modified matrix for (var i = 1; i <= n; i++) { for (var j = 1; j <= n; j++) { // check for all directions if ((A[i][j] < A[i - 1][j]) && (A[i][j] < A[i + 1][j]) && (A[i][j] < A[i][j - 1]) && (A[i][j] < A[i][j + 1]) && (A[i][j] < A[i - 1][j - 1]) && (A[i][j] < A[i + 1][j + 1]) && (A[i][j] < A[i - 1][j + 1]) && (A[i][j] < A[i + 1][j - 1])) coun++; } } return coun;} var a = [ [ 4, 5, 6 ],[ 7, 1, 5 ], [ 4, 5, 6 ] ]; var n = 3; document.write( countCavities(a, n));// This code is contributed by SoumikMondal</script> |
Output
1
Optimizations We can avoid use of extra space and extra conditions by following below steps.
- Explicitly check for four corner elements, remaining elements of first row, last row, first column and last column.
- Check for remaining elements using above logic.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



