Find permutation array from the cumulative sum array

Given an array arr[] of N elements where each arr[i] is the cumulative sum of the subarray P[0…i] of another array P[] where P is the permutation of the integers from 1 to N. The task is to find the array P[], if no such P exists then print -1.
Examples:
Input: arr[] = {2, 3, 6}
Output: 2 1 3
Input: arr[] = {1, 2, 2, 4}
Output: -1
Approach:
- The first element of the cumulative array must be the first element of permutation array and the element at the ith position will be arr[i] – arr[i – 1] as arr[] is the cumulative sum array of the permutation array.
- So, find the array from the cumulative sum array and then mark the occurrence of every element from 1 to N that is present in the generated array.
- If any element is appearing more than once then the permutation is invalid else print the permutation.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to find the valid permutationvoid getPermutation(int a[], int n){ // Find the array from the cumulative sum vector<int> ans(n); ans[0] = a[0]; for (int i = 1; i < n; i++) ans[i] = a[i] - a[i - 1]; // To mark the occurrence of an element bool present[n + 1] = { false }; for (int i = 0; i < ans.size(); i++) { // If current element has already // been seen previously if (present[ans[i]]) { cout << "-1"; return; } // Mark the current element's occurrence else present[ans[i]] = true; } // Print the required permutation for (int i = 0; i < n; i++) cout << ans[i] << " ";}// Driver codeint main(){ int a[] = { 2, 3, 6 }; int n = sizeof(a) / sizeof(a[0]); getPermutation(a, n); return 0;} |
Java
// Java implementation of the approachclass GFG{// Function to find the valid permutationstatic void getPermutation(int a[], int n){ // Find the array from the cumulative sum int []ans = new int[n]; ans[0] = a[0]; for (int i = 1; i < n; i++) ans[i] = a[i] - a[i - 1]; // To mark the occurrence of an element boolean []present = new boolean[n + 1]; for (int i = 0; i < ans.length; i++) { // If current element has already // been seen previously if (present[ans[i]]) { System.out.print("-1"); return; } // Mark the current element's occurrence else present[ans[i]] = true; } // Print the required permutation for (int i = 0; i < n; i++) System.out.print(ans[i] + " ");}// Driver codepublic static void main(String[] args){ int a[] = { 2, 3, 6 }; int n = a.length; getPermutation(a, n);}}// This code is contributed by Rajput-Ji |
Python3
# Python3 implementation of the approach # Function to find the valid permutation def getPermutation(a, n) : # Find the array from the cumulative sum ans = [0] * n; ans[0] = a[0]; for i in range(1, n) : ans[i] = a[i] - a[i - 1]; # To mark the occurrence of an element present = [0] * (n + 1); for i in range(n) : # If current element has already # been seen previously if (present[ans[i]]) : print("-1", end = ""); return; # Mark the current element's occurrence else : present[ans[i]] = True; # Print the required permutation for i in range(n) : print(ans[i], end = " "); # Driver code if __name__ == "__main__" : a = [ 2, 3, 6 ]; n = len(a); getPermutation(a, n); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the above approach using System; using System.Collections.Generic; class GFG { // Function to find the valid permutationstatic void getPermutation(int [] a, int n){ // Find the array from the cumulative sum List<int> ans = new List<int>(); ans.Add(a[0]); for (int i = 1; i < n; i++) ans.Add(a[i] - a[i - 1]); // To mark the occurrence of an element List<int> present = new List<int>(); for (int i = 0; i < n+1; i++) present.Add(0); for (int i = 0; i < ans.Count; i++) { // If current element has already // been seen previously if (present[ans[i]] == 1) { Console.Write("-1"); return; } // Mark the current element's occurrence else present[ans[i]] = 1; } // Print the required permutation for (int i = 0; i < n; i++) Console.Write(ans[i] + " ");}// Driver codestatic public void Main() { int[] a = { 2,3,6}; int n = a.Length; getPermutation(a, n); } }// This code is contributed by mohit kumar 29 |
Javascript
<script>// Javascript implementation of the approach// Function to find the valid permutationfunction getPermutation(a, n){ // Find the array from the cumulative sum var ans = Array(n); ans[0] = a[0]; for (var i = 1; i < n; i++) ans[i] = a[i] - a[i - 1]; // To mark the occurrence of an element var present = Array(n+1).fill(false); for (var i = 0; i < ans.length; i++) { // If current element has already // been seen previously if (present[ans[i]]) { document.write( "-1"); return; } // Mark the current element's occurrence else present[ans[i]] = true; } // Print the required permutation for (var i = 0; i < n; i++) document.write( ans[i] + " ");}// Driver codevar a = [2, 3, 6];var n = a.length;getPermutation(a, n);// This code is contributed by rrrtnx.</script> |
Output:
2 1 3
Time Complexity: O(n)
Auxiliary Space: O(n)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



