Find the longest Fibonacci-like subarray of the given array

Given an array of N elements, the task is to find the longest subarray which is Fibonacci-like.
A Fibonacci-like sub-array is defined as an array in which:
A[i]=A[i-1]+A[i-2] where i>2 and, A[1] and A[2] can be anything.
Examples:
Input : N = 5, arr[] = {2, 4, 6, 10, 2}
Output : 4
The sub-array 2, 4, 6, 10 is Fibonacci like.
Input : N = 3, arr[] = {0, 0, 0}
Output : 3
The entire array is Fibonacci-like.
Approach:
The idea is to observe that any array of length of less than or equal to 2 is Fibonacci-like. Now, for arrays of length greater than 2:
- Maintain a variable len initialized to 2 and a variable mx to store the maximum length so far.
- Start traversing the array from 3rd index.
- If the fibonacci like array can be extended for this index, i.e. if a[i] = a[i-1] + a[i-2]
- Then increment the value of variable len by 1.
- Otherwise reinitialize the variable len to 2.
- Store the maximum of mx and len in the variable mx for current iteration.
Below is the implementation of the above approach:
C++
// C++ program to find length of longest// Fibonacci-like subarray#include <bits/stdc++.h>using namespace std;// Function to find the length of the // longest Fibonacci-like subarrayint longestFibonacciSubarray(int n, int a[]){ // Any 2 terms are Fibonacci-like if (n <= 2) return n; int len = 2; int mx = INT_MIN; for (int i = 2; i < n; i++) { // If previous subarray can be extended if (a[i] == a[i - 1] + a[i - 2]) len++; // Any 2 terms are Fibonacci-like else len = 2; // Find the maximum length mx = max(mx, len); } return mx;}// Driver Codeint main(){ int n = 5; int a[] = {2, 4, 6, 10, 2}; cout << longestFibonacciSubarray(n, a); return 0;} |
Java
// Java program to find length of longest // Fibonacci-like subarray class GFG { // Function to find the length of the // longest Fibonacci-like subarray static int longestFibonacciSubarray(int n, int a[]) { // Any 2 terms are Fibonacci-like if (n <= 2) return n; int len = 2; int mx = Integer.MIN_VALUE; for (int i = 2; i < n; i++) { // If previous subarray can be extended if (a[i] == a[i - 1] + a[i - 2]) len++; // Any 2 terms are Fibonacci-like else len = 2; // Find the maximum length mx = Math.max(mx, len); } return mx; } // Driver Code public static void main (String[] args) { int n = 5; int a[] = {2, 4, 6, 10, 2}; System.out.println(longestFibonacciSubarray(n, a)); } }// This code is contributed by Ryuga |
Python3
# Python3 program to find Length of # longest Fibonacci-like subarray# Function to find the Length of the # longest Fibonacci-like subarraydef longestFibonacciSubarray(n, a): # Any 2 terms are Fibonacci-like if (n <= 2): return n Len = 2 mx = -10**9 for i in range(2, n): # If previous subarray can be extended if (a[i] == a[i - 1] + a[i - 2]): Len += 1 # Any 2 terms are Fibonacci-like else: Len = 2 # Find the maximum Length mx = max(mx, Len) return mx# Driver Coden = 5a = [2, 4, 6, 10, 2]print(longestFibonacciSubarray(n, a))# This code is contributed by Mohit Kumar |
C#
// C# program to find length of longest // Fibonacci-like subarray using System;class GFG { // Function to find the length of the // longest Fibonacci-like subarray static int longestFibonacciSubarray(int n, int[] a) { // Any 2 terms are Fibonacci-like if (n <= 2) return n; int len = 2; int mx = int.MinValue; for (int i = 2; i < n; i++) { // If previous subarray can be extended if (a[i] == a[i - 1] + a[i - 2]) len++; // Any 2 terms are Fibonacci-like else len = 2; // Find the maximum length mx = Math.Max(mx, len); } return mx; } // Driver Code public static void Main () { int n = 5; int[] a = {2, 4, 6, 10, 2}; Console.WriteLine(longestFibonacciSubarray(n, a)); } }// This code is contributed by Code_Mech. |
PHP
<?php// PHP program to find length of longest// Fibonacci-like subarray// Function to find the length of the // longest Fibonacci-like subarrayfunction longestFibonacciSubarray($n, $a){ // Any 2 terms are Fibonacci-like if ($n <= 2) return $n; $len = 2; $mx = PHP_INT_MIN; for ($i = 2; $i < $n; $i++) { // If previous subarray can be extended if ($a[$i] == $a[$i - 1] + $a[$i - 2]) $len++; // Any 2 terms are Fibonacci-like else $len = 2; // Find the maximum length $mx = max($mx, $len); } return $mx;}// Driver Code$n = 5;$a = array(2, 4, 6, 10, 2); echo longestFibonacciSubarray($n, $a);// This code is contributed // by Akanksha Rai ?> |
Javascript
<script>// javascript program to find length of longest// Fibonacci-like subarray // Function to find the length of the // longest Fibonacci-like subarray function longestFibonacciSubarray( n, a) { // Any 2 terms are Fibonacci-like if (n <= 2) return n; var len = 2; var mx = Number.MIN_VALUE; for (var i = 2; i < n; i++) { // If previous subarray can be extended if (a[i] == a[i - 1] + a[i - 2]) len++; // Any 2 terms are Fibonacci-like else len = 2; // Find the maximum length mx = Math.max(mx, len); } return mx; } // Driver Code var n = 5; var a = [2, 4, 6, 10, 2]; document.write(longestFibonacciSubarray(n, a)); // This code is contributed by bunnyram19.</script> |
Output:
4
Time Complexity: O(N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



