Minimize the sum after choosing elements from the given three arrays

Given three arrays A[], B[] and C[] of same size N. The task is to minimize the sum after choosing N elements from these array such that at every index i an element from any one of the array A[i], B[i] or C[i] can be chosen and no two consecutive elements can be chosen from the same array.
Examples:Â
Input: A[] = {1, 100, 1}, B[] = {100, 100, 100}, C[] = {100, 100, 100}Â
Output: 102Â
A[0] + B[1] + A[2] = 1 + 100 + 100 = 201Â
A[0] + B[1] + C[2] = 1 + 100 + 100 = 201Â
A[0] + C[1] + B[2] = 1 + 100 + 100 = 201Â
A[0] + C[1] + A[2] = 1 + 100 + 1 = 102Â
B[0] + A[1] + B[2] = 100 + 100 + 100 = 300Â
B[0] + A[1] + C[2] = 100 + 100 + 100 = 300Â
B[0] + C[1] + A[2] = 100 + 100 + 1 = 201Â
B[0] + C[1] + B[2] = 100 + 100 + 100 = 300Â
C[0] + A[1] + B[2] = 100 + 100 + 100 = 300Â
C[0] + A[1] + C[2] = 100 + 100 + 100 = 300Â
C[0] + B[1] + A[2] = 100 + 100 + 1 = 201Â
C[0] + B[1] + C[2] = 100 + 100 + 100 = 300
Input: A[] = {1, 1, 1}, B[] = {1, 1, 1}, C[] = {1, 1, 1}Â
Output: 3Â
Approach: The problem is a simple variation of finding minimum cost. The extra constraint are that if we take an element from a particular array then we cannot take the next element from the same array. This could easily be solved using recursion but it would give time complexity as O(3^n) because for every element we have three arrays as choices.
To improve the time complexity we can easily store the pre-calculated values in a dp array.
Since there are three arrays to choose from at every index, three cases arise in this scenario:Â
- Case 1: If array A[] is selected from the ith element then we either choose the array B[] or the array C[] for the (i + 1)th element.
- Case 2: If array B[] is selected from the ith element then we either choose the array A[] or the array C[] for the (i + 1)th element.
- Case 3: If array C[] is selected from the ith element then we either choose the array A[] or the array B[] for the (i + 1)th element.
The above states can be solved using recursion and intermediate results can be stored in the dp array.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approachÂ
#include <bits/stdc++.h>using namespace std;#define SIZE 3const int N = 3;Â
// Function to return the minimized sumint minSum(int A[], int B[], int C[], int i,        int n, int curr, int dp[SIZE][N]){Â
    // If all the indices have been used    if (n <= 0)        return 0;Â
    // If this value is pre-calculated    // then return its value from dp array    // instead of re-computing it    if (dp[n][curr] != -1)        return dp[n][curr];Â
    // Here curr is the array chosen    // for the (i - 1)th element    // 0 for A[], 1 for B[] and 2 for C[]Â
    // If A[i - 1] was chosen previously then    // only B[i] or C[i] can chosen now    // choose the one which leads    // to the minimum sum    if (curr == 0) {        return dp[n][curr]                 = min(B[i] + minSum(A, B, C, i + 1, n - 1, 1, dp),                      C[i] + minSum(A, B, C, i + 1, n - 1, 2, dp));    }Â
    // If B[i - 1] was chosen previously then    // only A[i] or C[i] can chosen now    // choose the one which leads    // to the minimum sum    if (curr == 1)        return dp[n][curr]                 = min(A[i] + minSum(A, B, C, i + 1, n - 1, 0, dp),                      C[i] + minSum(A, B, C, i + 1, n - 1, 2, dp));Â
    // If C[i - 1] was chosen previously then    // only A[i] or B[i] can chosen now    // choose the one which leads    // to the minimum sum    return dp[n][curr]                 = min(A[i] + minSum(A, B, C, i + 1, n - 1, 0, dp),                      B[i] + minSum(A, B, C, i + 1, n - 1, 1, dp));}Â
// Driver codeint main(){Â Â Â Â int A[] = { 1, 50, 1 };Â Â Â Â int B[] = { 50, 50, 50 };Â Â Â Â int C[] = { 50, 50, 50 };Â
    // Initialize the dp[][] array    int dp[SIZE][N];    for (int i = 0; i < SIZE; i++)        for (int j = 0; j < N; j++)            dp[i][j] = -1;Â
    // min(start with A[0], start with B[0], start with C[0])    cout << min(A[0] + minSum(A, B, C, 1, SIZE - 1, 0, dp),                min(B[0] + minSum(A, B, C, 1, SIZE - 1, 1, dp),                    C[0] + minSum(A, B, C, 1, SIZE - 1, 2, dp)));Â
    return 0;} |
Java
// Java implementation of the above approachimport java.io.*;Â
class GFG {Â
static int SIZE = 3;static int N = 3;Â
// Function to return the minimized sumstatic int minSum(int A[], int B[], int C[], int i,                    int n, int curr, int [][]dp){Â
    // If all the indices have been used    if (n <= 0)        return 0;Â
    // If this value is pre-calculated    // then return its value from dp array    // instead of re-computing it    if (dp[n][curr] != -1)        return dp[n][curr];Â
    // Here curr is the array chosen    // for the (i - 1)th element    // 0 for A[], 1 for B[] and 2 for C[]Â
    // If A[i - 1] was chosen previously then    // only B[i] or C[i] can chosen now    // choose the one which leads    // to the minimum sum    if (curr == 0)     {        return dp[n][curr]                 = Math.min(B[i] + minSum(A, B, C, i + 1, n - 1, 1, dp),                    C[i] + minSum(A, B, C, i + 1, n - 1, 2, dp));    }Â
    // If B[i - 1] was chosen previously then    // only A[i] or C[i] can chosen now    // choose the one which leads    // to the minimum sum    if (curr == 1)        return dp[n][curr]                 = Math.min(A[i] + minSum(A, B, C, i + 1, n - 1, 0, dp),                    C[i] + minSum(A, B, C, i + 1, n - 1, 2, dp));Â
    // If C[i - 1] was chosen previously then    // only A[i] or B[i] can chosen now    // choose the one which leads    // to the minimum sum    return dp[n][curr]                 = Math.min(A[i] + minSum(A, B, C, i + 1, n - 1, 0, dp),                    B[i] + minSum(A, B, C, i + 1, n - 1, 1, dp));}Â
// Driver codepublic static void main (String[] args) {    int A[] = { 1, 50, 1 };    int B[] = { 50, 50, 50 };    int C[] = { 50, 50, 50 };         // Initialize the dp[][] array    int dp[][] = new int[SIZE][N];    for (int i = 0; i < SIZE; i++)        for (int j = 0; j < N; j++)            dp[i][j] = -1;         // min(start with A[0], start with B[0], start with C[0])    System.out.println(Math.min(A[0] + minSum(A, B, C, 1, SIZE - 1, 0, dp),                Math.min(B[0] + minSum(A, B, C, 1, SIZE - 1, 1, dp),                    C[0] + minSum(A, B, C, 1, SIZE - 1, 2, dp))));}}Â
// This code is contributed by anuj_67.. |
Python3
# Python3 implementation of the above approach Â
import numpy as npÂ
SIZE = 3; N = 3; Â
# Function to return the minimized sum def minSum(A, B, C, i, n, curr, dp) : Â
    # If all the indices have been used     if (n <= 0) :        return 0; Â
    # If this value is pre-calculated     # then return its value from dp array     # instead of re-computing it     if (dp[n][curr] != -1) :        return dp[n][curr]; Â
    # Here curr is the array chosen     # for the (i - 1)th element     # 0 for A[], 1 for B[] and 2 for C[] Â
    # If A[i - 1] was chosen previously then     # only B[i] or C[i] can chosen now     # choose the one which leads     # to the minimum sum     if (curr == 0) :         dp[n][curr] = min( B[i] + minSum(A, B, C, i + 1, n - 1, 1, dp),         C[i] + minSum(A, B, C, i + 1, n - 1, 2, dp));         return dp[n][curr]      Â
    # If B[i - 1] was chosen previously then     # only A[i] or C[i] can chosen now     # choose the one which leads     # to the minimum sum     if (curr == 1) :        dp[n][curr] = min(A[i] + minSum(A, B, C, i + 1, n - 1, 0, dp),         C[i] + minSum(A, B, C, i + 1, n - 1, 2, dp));         return dp[n][curr]Â
    # If C[i - 1] was chosen previously then     # only A[i] or B[i] can chosen now     # choose the one which leads     # to the minimum sum     dp[n][curr] = min(A[i] + minSum(A, B, C, i + 1, n - 1, 0, dp),     B[i] + minSum(A, B, C, i + 1, n - 1, 1, dp));          return dp[n][curr]Â
Â
# Driver code if __name__ == "__main__" : Â
    A = [ 1, 50, 1 ];     B = [ 50, 50, 50 ];     C = [ 50, 50, 50 ]; Â
    # Initialize the dp[][] array     dp = np.zeros((SIZE,N));          for i in range(SIZE) :        for j in range(N) :             dp[i][j] = -1; Â
    # min(start with A[0], start with B[0], start with C[0])     print(min(A[0] + minSum(A, B, C, 1, SIZE - 1, 0, dp),                 min(B[0] + minSum(A, B, C, 1, SIZE - 1, 1, dp),                 C[0] + minSum(A, B, C, 1, SIZE - 1, 2, dp)))); Â
# This code is contributed by AnkitRai01 |
C#
// C# implementation of the above approachusing System;Â
class GFG {Â
static int SIZE = 3;static int N = 3;Â
// Function to return the minimized sumstatic int minSum(int []A, int []B, int []C, int i,                    int n, int curr, int [,]dp){Â
    // If all the indices have been used    if (n <= 0)        return 0;Â
    // If this value is pre-calculated    // then return its value from dp array    // instead of re-computing it    if (dp[n,curr] != -1)        return dp[n,curr];Â
    // Here curr is the array chosen    // for the (i - 1)th element    // 0 for A[], 1 for B[] and 2 for C[]Â
    // If A[i - 1] was chosen previously then    // only B[i] or C[i] can chosen now    // choose the one which leads    // to the minimum sum    if (curr == 0)     {        return dp[n,curr]                 = Math.Min(B[i] + minSum(A, B, C, i + 1, n - 1, 1, dp),                    C[i] + minSum(A, B, C, i + 1, n - 1, 2, dp));    }Â
    // If B[i - 1] was chosen previously then    // only A[i] or C[i] can chosen now    // choose the one which leads    // to the minimum sum    if (curr == 1)        return dp[n,curr]                 = Math.Min(A[i] + minSum(A, B, C, i + 1, n - 1, 0, dp),                    C[i] + minSum(A, B, C, i + 1, n - 1, 2, dp));Â
    // If C[i - 1] was chosen previously then    // only A[i] or B[i] can chosen now    // choose the one which leads    // to the minimum sum    return dp[n,curr]                 = Math.Min(A[i] + minSum(A, B, C, i + 1, n - 1, 0, dp),                    B[i] + minSum(A, B, C, i + 1, n - 1, 1, dp));}Â
// Driver codepublic static void Main () {    int []A = { 1, 50, 1 };    int []B = { 50, 50, 50 };    int []C = { 50, 50, 50 };         // Initialize the dp[][] array    int [,]dp = new int[SIZE,N];    for (int i = 0; i < SIZE; i++)        for (int j = 0; j < N; j++)            dp[i,j] = -1;         // min(start with A[0], start with B[0], start with C[0])    Console.WriteLine(Math.Min(A[0] + minSum(A, B, C, 1, SIZE - 1, 0, dp),                Math.Min(B[0] + minSum(A, B, C, 1, SIZE - 1, 1, dp),                    C[0] + minSum(A, B, C, 1, SIZE - 1, 2, dp))));}}Â
// This code is contributed by anuj_67.. |
Javascript
<script>    // Javascript implementation of the above approach         let SIZE = 3;    let N = 3;Â
    // Function to return the minimized sum    function minSum(A, B, C, i, n, curr, dp)    {Â
        // If all the indices have been used        if (n <= 0)            return 0;Â
        // If this value is pre-calculated        // then return its value from dp array        // instead of re-computing it        if (dp[n][curr] != -1)            return dp[n][curr];Â
        // Here curr is the array chosen        // for the (i - 1)th element        // 0 for A[], 1 for B[] and 2 for C[]Â
        // If A[i - 1] was chosen previously then        // only B[i] or C[i] can chosen now        // choose the one which leads        // to the minimum sum        if (curr == 0)         {            return dp[n][curr]                     = Math.min(B[i] + minSum(A, B, C, i + 1, n - 1, 1, dp),                        C[i] + minSum(A, B, C, i + 1, n - 1, 2, dp));        }Â
        // If B[i - 1] was chosen previously then        // only A[i] or C[i] can chosen now        // choose the one which leads        // to the minimum sum        if (curr == 1)            return dp[n][curr]                     = Math.min(A[i] + minSum(A, B, C, i + 1, n - 1, 0, dp),                        C[i] + minSum(A, B, C, i + 1, n - 1, 2, dp));Â
        // If C[i - 1] was chosen previously then        // only A[i] or B[i] can chosen now        // choose the one which leads        // to the minimum sum        return dp[n][curr]                     = Math.min(A[i] + minSum(A, B, C, i + 1, n - 1, 0, dp),                        B[i] + minSum(A, B, C, i + 1, n - 1, 1, dp));    }         let A = [ 1, 50, 1 ];    let B = [ 50, 50, 50 ];    let C = [ 50, 50, 50 ];           // Initialize the dp[][] array    let dp = new Array(SIZE);    for (let i = 0; i < SIZE; i++)    {        dp[i] = new Array(N);        for (let j = 0; j < N; j++)        {            dp[i][j] = -1;        }    }           // min(start with A[0], start with B[0], start with C[0])    document.write(Math.min(A[0] + minSum(A, B, C, 1, SIZE - 1, 0, dp),                Math.min(B[0] + minSum(A, B, C, 1, SIZE - 1, 1, dp),                    C[0] + minSum(A, B, C, 1, SIZE - 1, 2, dp))));Â
</script> |
52
Time Complexity: O(SIZE*N), where dp operations taking SIZE*N time
Auxiliary Space: O(SIZE*N), where dp array is made of two states SIZE*N
Efficient approach : Using DP Tabulation method ( Iterative approach )
The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memoization(top-down) because memoization method needs extra stack space of recursion calls.
Steps to solve this problem :
- Create a DP to store the solution of the subproblems.
- Initialize the DP Â with base cases
- Now Iterate over subproblems to get the value of current problem form previous computation of subproblems stored in DP.
- Return the final solution minimum of min(dp[0][0], min(dp[0][1], dp[0][2])).
Implementation :
C++
#include <iostream>using namespace std;Â
const int SIZE = 3;Â
// Function to return the minimized sumint minSum(int A[], int B[], int C[]) {Â Â Â Â int dp[SIZE][3];Â
    // Base case    dp[SIZE-1][0] = A[SIZE-1];    dp[SIZE-1][1] = B[SIZE-1];    dp[SIZE-1][2] = C[SIZE-1];Â
    // Tabulate the solution from bottom up    for(int i = SIZE-2; i >= 0; i--) {                 // iterate over subproblems to get the current          // value from previous computaions        dp[i][0] = A[i] + min(dp[i+1][1], dp[i+1][2]);        dp[i][1] = B[i] + min(dp[i+1][0], dp[i+1][2]);        dp[i][2] = C[i] + min(dp[i+1][0], dp[i+1][1]);    }Â
    // Return the minimized sum    return min(dp[0][0], min(dp[0][1], dp[0][2]));}Â
// Driver codeint main() {    int A[] = { 1, 50, 1 };    int B[] = { 50, 50, 50 };    int C[] = { 50, 50, 50 };           // function call    cout << minSum(A, B, C) << endl;    return 0;} |
Java
// Java program to return the minimized sumpublic class Main {Â Â Â Â public static void main(String[] args) {Â Â Â Â Â Â Â Â int SIZE = 3;Â Â Â Â Â Â Â Â int[] A = { 1, 50, 1 };Â Â Â Â Â Â Â Â int[] B = { 50, 50, 50 };Â Â Â Â Â Â Â Â int[] C = { 50, 50, 50 };Â
        int[][] dp = new int[SIZE][3];Â
        // Base case        dp[SIZE - 1][0] = A[SIZE - 1];        dp[SIZE - 1][1] = B[SIZE - 1];        dp[SIZE - 1][2] = C[SIZE - 1];Â
        // Tabulate the solution from bottom up        for (int i = SIZE - 2; i >= 0; i--) {Â
            // Iterate over subproblems to get the current            // value from previous computations            dp[i][0] = A[i] + Math.min(dp[i + 1][1], dp[i + 1][2]);            dp[i][1] = B[i] + Math.min(dp[i + 1][0], dp[i + 1][2]);            dp[i][2] = C[i] + Math.min(dp[i + 1][0], dp[i + 1][1]);        }Â
        // Return the minimized sum        int result = Math.min(dp[0][0], Math.min(dp[0][1], dp[0][2]));        System.out.println(result);    }} |
Python3
import sysÂ
SIZE = 3Â
# Function to return the minimized sumÂ
Â
def minSum(A, B, C):Â Â Â Â dp = [[0 for j in range(3)] for i in range(SIZE)]Â
    # Base case    dp[SIZE-1][0] = A[SIZE-1]    dp[SIZE-1][1] = B[SIZE-1]    dp[SIZE-1][2] = C[SIZE-1]Â
    # Tabulate the solution from bottom up    for i in range(SIZE-2, -1, -1):        # iterate over subproblems to get the current        # value from previous computaions        dp[i][0] = A[i] + min(dp[i+1][1], dp[i+1][2])        dp[i][1] = B[i] + min(dp[i+1][0], dp[i+1][2])        dp[i][2] = C[i] + min(dp[i+1][0], dp[i+1][1])Â
    # Return the minimized sum    return min(dp[0][0], min(dp[0][1], dp[0][2]))Â
Â
# Driver codeif __name__ == '__main__':Â Â Â Â A = [1, 50, 1]Â Â Â Â B = [50, 50, 50]Â Â Â Â C = [50, 50, 50]Â
    # function call    print(minSum(A, B, C)) |
C#
using System;Â
class Program{Â Â Â Â const int SIZE = 3;Â
    // Function to return the minimized sum    static int MinSum(int[] A, int[] B, int[] C)    {        int[,] dp = new int[SIZE, 3];Â
        // Base case        dp[SIZE - 1, 0] = A[SIZE - 1];        dp[SIZE - 1, 1] = B[SIZE - 1];        dp[SIZE - 1, 2] = C[SIZE - 1];Â
        // Tabulate the solution from bottom up        for (int i = SIZE - 2; i >= 0; i--)        {            // Iterate over subproblems to get the current            // value from previous computations            dp[i, 0] = A[i] + Math.Min(dp[i + 1, 1], dp[i + 1, 2]);            dp[i, 1] = B[i] + Math.Min(dp[i + 1, 0], dp[i + 1, 2]);            dp[i, 2] = C[i] + Math.Min(dp[i + 1, 0], dp[i + 1, 1]);        }Â
        // Return the minimized sum        return Math.Min(dp[0, 0], Math.Min(dp[0, 1], dp[0, 2]));    }Â
    // Driver Code    static void Main()    {        int[] A = { 1, 50, 1 };        int[] B = { 50, 50, 50 };        int[] C = { 50, 50, 50 };Â
        // Function call        Console.WriteLine(MinSum(A, B, C));    }} |
Javascript
const SIZE = 3;Â
// Function to return the minimized sumfunction minSum(A, B, C) {Â Â Â Â const dp = new Array(SIZE).fill().map(() => new Array(3));Â
    // Base case    dp[SIZE - 1][0] = A[SIZE - 1];    dp[SIZE - 1][1] = B[SIZE - 1];    dp[SIZE - 1][2] = C[SIZE - 1];Â
    // Tabulate the solution from bottom up    for (let i = SIZE - 2; i >= 0; i--) {        // Iterate over subproblems to get the current        // value from previous computations        dp[i][0] = A[i] + Math.min(dp[i + 1][1], dp[i + 1][2]);        dp[i][1] = B[i] + Math.min(dp[i + 1][0], dp[i + 1][2]);        dp[i][2] = C[i] + Math.min(dp[i + 1][0], dp[i + 1][1]);    }Â
    // Return the minimized sum    return Math.min(dp[0][0], Math.min(dp[0][1], dp[0][2]));}Â
// Driver codeconst A = [1, 50, 1];const B = [50, 50, 50];const C = [50, 50, 50];Â
// Function callconsole.log(minSum(A, B, C)); |
52
Time Complexity: O(n), where n is the size of the arrays A, B, and C.
Auxiliary Space: O(n), as the dp array has n rows and 3 columns
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



