Minimum cost of path between given nodes containing at most K nodes in a directed and weighted graph

Given a directed weighted graph represented by a 2-D array graph[][] of size n and 3 integers src, dst, and k representing the source point, destination point, and the available number of stops. The task is to minimize the cost of the path between two nodes containing at most K nodes in a directed and weighted graph. If there is no such route, return -1.
Examples:
Input: n=6, graph[][] = [[0, 1, 10], [1, 2, 20], [1, 3, 10], [2, 5, 30], [3, 4, 10], [4, 5, 10]], src=0, dst=5, k=2
Output: 60
Explanation:![]()
Src = 0, Dst = 5 and k = 2
There can be a route marked with a green arrow that takes cost = 10+10+10+10=40 using three stops. And route marked with red arrow takes cost = 10+20+30=60 using two stops. But since there can be at most 2 stops, the answer will be 60.
Input: n=3, graph[][] = [[0, 1, 10], [0, 2, 50], [1, 2, 10], src=0, dst=2, k=1
Output: 20
Explanation:![]()
Src=0 and Dst=2
Since the k is 1, then the green-colored path can be taken with a minimum cost of 20.
Approach: Increase k by 1 because on reaching the destination, k+1 stops will be consumed. Use Breadth-first search to run while loop till the queue becomes empty. At each time pop out all the elements from the queue and decrease k by 1 and check-in their adjacent list of elements and check they are not visited before or their cost is greater than the cost of parent node + cost of that node, then mark their prices by prices[parent] + cost of that node. If k becomes 0 then break the while loop because either cost is calculated or we consumed k+1 stops. Follow the steps below to solve the problem:
- Increase the value of k by 1.
- Initialize a vector of pair adj[n] and construct the adjacency list for the graph.
- Initialize a vector prices[n] with values -1.
- Initialize a queue of pair q[].
- Push the pair {src, 0} into the queue and set the value of prices[0] as 0.
- Traverse in a while loop until the queue becomes empty and perform the following steps:
- If k equals 0 then break.
- Initialize the variable sz as the size of the queue.
- Traverse in a while loop until sz is greater than 0 and perform the following tasks:
- Initialize the variables node as the first value of the front pair of the queue and cost as the second value of the front pair of the queue.
- Iterate over the range [0, adj[node].size()) using the variable it and perform the following tasks:
- If prices[it.first] equals -1 or cost + it.second is less than prices[it.first] then set the value of prices[it.first] as cost + it.second and push the pair {it.first, cost + it.second} into the queue.
- Reduce the value of k by 1.
- After performing the above steps, print the value of prices[dst] as the answer.
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>using namespace std;// Function to find the minimum cost// from src to dst with at most k stopsint findCheapestCost(int n, vector<vector<int> >& graph, int src, int dst, int k){ //if the destination cannot be reached if(dst > n) return -1; // Increase k by 1 Because on reaching // destination, k becomes k+1 k = k + 1; // Making Adjacency List vector<pair<int, int> > adj[n]; // U->{v, wt} for (auto it : graph) { adj[it[0]].push_back({ it[1], it[2] }); } // Vector for Storing prices vector<int> prices(n, -1); // Queue for storing vertex and cost queue<pair<int, int> > q; q.push({ src, 0 }); prices[src] = 0; while (!q.empty()) { // If all the k stops are used, // then break if (k == 0) break; int sz = q.size(); while (sz--) { int node = q.front().first; int cost = q.front().second; q.pop(); for (auto it : adj[node]) { if (prices[it.first] == -1 or cost + it.second < prices[it.first]) { prices[it.first] = cost + it.second; q.push({ it.first, cost + it.second }); } } } k--; } return prices[dst];}// Driver Codeint main(){ int n = 6; vector<vector<int> > graph = { { 0, 1, 10 }, { 1, 2, 20 }, { 2, 5, 30 }, { 1, 3, 10 }, { 3, 4, 10 }, { 4, 5, 10 } }; int src = 0; int dst = 5; int k = 2; cout << findCheapestCost(n, graph, src, dst, k) << endl; return 0;} |
Java
// Java program for the above approachimport java.util.*;public class GFG{ static class pair { int first, second; public pair(int first, int second) { this.first = first; this.second = second; } } // Function to find the minimum cost // from src to dst with at most k stops static int findCheapestCost(int n, int[][] graph, int src, int dst, int k) { //if the destination cannot be reached if(dst > n) return -1; // Increase k by 1 Because on reaching // destination, k becomes k+1 k = k + 1; // Making Adjacency List Vector<pair> []adj = new Vector[n]; for (int i = 0; i < adj.length; i++) adj[i] = new Vector<pair>(); // U.{v, wt} for (int it[] : graph) { adj[it[0]].add(new pair( it[1], it[2] )); } // Vector for Storing prices int []prices = new int[n]; Arrays.fill(prices, -1); // Queue for storing vertex and cost Queue<pair > q = new LinkedList<>(); q.add(new pair( src, 0 )); prices[src] = 0; while (!q.isEmpty()) { // If all the k stops are used, // then break if (k == 0) break; int sz = q.size(); while (sz-- >0) { int node = q.peek().first; int cost = q.peek().second; q.remove(); for (pair it : adj[node]) { if (prices[it.first] == -1 || cost + it.second < prices[it.first]) { prices[it.first] = cost + it.second; q.add(new pair( it.first, cost + it.second )); } } } k--; } return prices[dst]; } // Driver Code public static void main(String[] args) { int n = 6; int[][] graph = { { 0, 1, 10 }, { 1, 2, 20 }, { 2, 5, 30 }, { 1, 3, 10 }, { 3, 4, 10 }, { 4, 5, 10 } }; int src = 0; int dst = 5; int k = 2; System.out.print(findCheapestCost(n, graph, src, dst, k) +"\n"); }}// This code is contributed by 29AjayKumar |
Python3
# python3 program for the above approachfrom collections import deque# Function to find the minimum cost# from src to dst with at most k stopsdef findCheapestCost(n, graph, src, dst, k): # if the destination cannot be reached if dst > n: return -1; # Increase k by 1 Because on reaching # destination, k becomes k+1 k = k + 1 # Making Adjacency List adj = [[] for _ in range(n)] # U->{v, wt} for it in graph: adj[it[0]].append([it[1], it[2]]) # Vector for Storing prices prices = [-1 for _ in range(n)] # Queue for storing vertex and cost q = deque() q.append([src, 0]) prices[src] = 0 while (len(q) != 0): # If all the k stops are used, # then break if (k == 0): break sz = len(q) while (True): sz -= 1 pr = q.popleft() node = pr[0] cost = pr[1] for it in adj[node]: if (prices[it[0]] == -1 or cost + it[1] < prices[it[0]]): prices[it[0]] = cost + it[1] q.append([it[0], cost + it[1]]) if sz == 0: break k -= 1 return prices[dst]# Driver Codeif __name__ == "__main__": n = 6 graph = [ [0, 1, 10], [1, 2, 20], [2, 5, 30], [1, 3, 10], [3, 4, 10], [4, 5, 10]] src = 0 dst = 5 k = 2 print(findCheapestCost(n, graph, src, dst, k)) # This code is contributed by rakeshsahni |
C#
using System;using System.Collections.Generic;class Program{ // Function to find the minimum cost // from src to dst with at most k stops public static int findCheapestCost(int n, int[,] graph, int src, int dst, int k) { // if the destination cannot be reached if (dst > n) { return -1; } // Increase k by 1 Because on reaching // destination, k becomes k+1 k = k + 1; // Making Adjacency List List<List<int[]>> adj = new List<List<int[]>>(); for (int i = 0; i < n; i++) { adj.Add(new List<int[]>()); } // U->{v, wt} for (int i = 0; i < graph.GetLength(0); i++) { adj[graph[i, 0]].Add(new int[] { graph[i, 1], graph[i, 2] }); } // Vector for Storing prices int[] prices = new int[n]; for (int i = 0; i < n; i++) { prices[i] = -1; } // Queue for storing vertex and cost Queue<int[]> q = new Queue<int[]>(); q.Enqueue(new int[] { src, 0 }); prices[src] = 0; while (q.Count != 0) { // If all the k stops are used, // then break if (k == 0) { break; } int sz = q.Count; while (sz-- > 0) { int[] pr = q.Dequeue(); int node = pr[0]; int cost = pr[1]; foreach (int[] it in adj[node]) { if (prices[it[0]] == -1 || cost + it[1] < prices[it[0]]) { prices[it[0]] = cost + it[1]; q.Enqueue(new int[] { it[0], cost + it[1] }); } } } k--; } return prices[dst]; } public static void Main() { int n = 6; int[,] graph = { {0, 1, 10}, {1, 2, 20}, {2, 5, 30}, {1, 3, 10}, {3, 4, 10}, {4, 5, 10} }; int src = 0; int dst = 5; int k = 2; Console.WriteLine(findCheapestCost(n, graph, src, dst, k)); }} |
Javascript
function findCheapestCost(n, graph, src, dst, k) { // if the destination cannot be reached if (dst > n) { return -1; } // Increase k by 1 Because on reaching // destination, k becomes k+1 k = k + 1; // Making Adjacency List let adj = Array.from({ length: n }, () => []); for (let i = 0; i < graph.length; i++) { adj[graph[i][0]].push([graph[i][1], graph[i][2]]); } // Vector for Storing prices let prices = Array.from({ length: n }, () => -1); // Queue for storing vertex and cost let q = []; q.push([src, 0]); prices[src] = 0; while (q.length != 0) { // If all the k stops are used, // then break if (k == 0) { break; } let sz = q.length; while (sz > 0) { sz -= 1; let pr = q.shift(); let node = pr[0]; let cost = pr[1]; for (let i = 0; i < adj[node].length; i++) { let it = adj[node][i]; if (prices[it[0]] == -1 || cost + it[1] < prices[it[0]]) { prices[it[0]] = cost + it[1]; q.push([it[0], cost + it[1]]); } } if (sz == 0) { break; } } k -= 1; } return prices[dst];}let n = 6;let graph = [ [0, 1, 10], [1, 2, 20], [2, 5, 30], [1, 3, 10], [3, 4, 10], [4, 5, 10],];let src = 0;let dst = 5;let k = 2;console.log(findCheapestCost(n, graph, src, dst, k)); |
60
Time Complexity: O(n*k)
Auxiliary Space: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



