Minimum cost to reverse edges such that there is path between every pair of nodes

Given a connected, directional graph. Each node is connected to exactly two other nodes. There is a weight associated with each edge denoting the cost to reverse its direction. The task is to find the minimum cost to reverse some edges of the graph such that it is possible to go from each node to every other node.
Examples:
Input: 5 1 2 7 5 1 8 5 4 5 3 4 1 3 2 10 Output: 15
Input: 6 1 5 4 5 3 8 2 4 15 1 6 16 2 3 23 4 6 42 Output: 39
Approach:
- In order to reach from each node to every other node, the graph must form a ring i.e Direct all edges on it in one of 2 directions either clockwise or anti-clockwise. Let us denote the cost of redirecting all the clockwise edges to anticlockwise direction as cost1 and vice versa as cost2. The answer is clearly the minimum of these two costs.
- Maintain two boolean arrays start and end. The start and end arrays denote whether there is an edge starting from or ending at a given node. Whenever we encounter an edge going from node a to node b, we first check the condition if there is an edge already starting from node a or ending at node b. If there is an edge that satisfying the condition, the edge is in the opposite direction to the edge already present. In this case, we update cost2 and store the edge in the opposite direction. Otherwise, we update the cost1. This way we are able to maintain the costs of both orientations. Finally, print the minimum cost.
Below is the implementation of the above approach:
C++
// C++ code to find// the minimum cost to// reverse the edges#include <bits/stdc++.h>using namespace std;// Function to calculate// min cost for reversing// the edgesint minCost(vector<vector<int> >& graph, int n){ int cost1 = 0, cost2 = 0; // bool array to mark // start and end node // of a graph bool start[n + 1] = { false }; bool end[n + 1] = { false }; for (int i = 0; i < n; i++) { int a = graph[i][0]; int b = graph[i][1]; int c = graph[i][2]; // This edge must // start from b and end at a if (start[a] || end[b]) { cost2 += c; start[b] = true; end[a] = true; } // This edge must // start from a and end at b else { cost1 += c; start[a] = true; end[b] = true; } } // Return minimum of // both possibilities return min(cost1, cost2);}// Driver codeint main(){ int n = 5; // Adjacency list representation // of a graph vector<vector<int> > graph = { { 1, 2, 7 }, { 5, 1, 8 }, { 5, 4, 5 }, { 3, 4, 1 }, { 3, 2, 10 } }; int ans = minCost(graph, n); cout << ans << '\n'; return 0;} |
Java
// Java code to find the minimum cost to// reverse the edgesclass GFG {// Function to calculate min cost for // reversing the edgesstatic int minCost(int[][] graph, int n){ int cost1 = 0, cost2 = 0; // bool array to mark start and // end node of a graph boolean []start = new boolean[n + 1]; boolean []end = new boolean[n + 1]; for (int i = 0; i < n; i++) { int a = graph[i][0]; int b = graph[i][1]; int c = graph[i][2]; // This edge must start from b // and end at a if (start[a] || end[b]) { cost2 += c; start[b] = true; end[a] = true; } // This edge must start from a // and end at b else { cost1 += c; start[a] = true; end[b] = true; } } // Return minimum of both possibilities return Math.min(cost1, cost2);}// Driver codepublic static void main(String[] args) { int n = 5; // Adjacency list representation // of a graph int [][]graph = {{ 1, 2, 7 }, { 5, 1, 8 }, { 5, 4, 5 }, { 3, 4, 1 }, { 3, 2, 10 }}; int ans = minCost(graph, n); System.out.println(ans);}}// This code is contributed by Rajput-Ji |
Python3
# Python code to find the minimum cost to# reverse the edges# Function to calculate min cost for # reversing the edgesdef minCost(graph, n): cost1, cost2 = 0, 0; # bool array to mark start and # end node of a graph start = [False]*(n + 1); end = [False]*(n + 1); for i in range(n): a = graph[i][0]; b = graph[i][1]; c = graph[i][2]; # This edge must start from b # and end at a if (start[a] or end[b]): cost2 += c; start[b] = True; end[a] = True; # This edge must start from a # and end at b else: cost1 += c; start[a] = True; end[b] = True; # Return minimum of both possibilities return min(cost1, cost2);# Driver codeif __name__ == '__main__': n = 5; # Adjacency list representation # of a graph graph = [[ 1, 2, 7 ], [ 5, 1, 8 ], [ 5, 4, 5 ], [ 3, 4, 1 ], [ 3, 2, 10 ]]; ans = minCost(graph, n); print(ans); # This code is contributed by 29AjayKumar |
C#
// C# code to find the minimum cost to// reverse the edgesusing System; class GFG {// Function to calculate min cost for // reversing the edgesstatic int minCost(int[,] graph, int n){ int cost1 = 0, cost2 = 0; // bool array to mark start and // end node of a graph Boolean []start = new Boolean[n + 1]; Boolean []end = new Boolean[n + 1]; for (int i = 0; i < n; i++) { int a = graph[i, 0]; int b = graph[i, 1]; int c = graph[i, 2]; // This edge must start from b // and end at a if (start[a] || end[b]) { cost2 += c; start[b] = true; end[a] = true; } // This edge must start from a // and end at b else { cost1 += c; start[a] = true; end[b] = true; } } // Return minimum of both possibilities return Math.Min(cost1, cost2);}// Driver codepublic static void Main(String[] args) { int n = 5; // Adjacency list representation // of a graph int [,]graph = {{ 1, 2, 7 }, { 5, 1, 8 }, { 5, 4, 5 }, { 3, 4, 1 }, { 3, 2, 10 }}; int ans = minCost(graph, n); Console.WriteLine(ans);}}// This code is contributed by PrinciRaj1992 |
Javascript
<script>// JavaScript code to find// the minimum cost to// reverse the edges// Function to calculate// min cost for reversing// the edgesfunction minCost(graph, n) { let cost1 = 0, cost2 = 0; // bool array to mark // start and end node // of a graph let start = new Array(n + 1).fill(false); let end = new Array(n + 1).fill(false); for (let i = 0; i < n; i++) { let a = graph[i][0]; let b = graph[i][1]; let c = graph[i][2]; // This edge must // start from b and end at a if (start[a] || end[b]) { cost2 += c; start[b] = true; end[a] = true; } // This edge must // start from a and end at b else { cost1 += c; start[a] = true; end[b] = true; } } // Return minimum of // both possibilities return Math.min(cost1, cost2);}// Driver codelet n = 5;// Adjacency list representation// of a graphlet graph = [ [1, 2, 7], [5, 1, 8], [5, 4, 5], [3, 4, 1], [3, 2, 10]];let ans = minCost(graph, n);document.write(ans + '<br>');</script> |
Output:
15
Time Complexity: O(n)
Auxiliary Space: O(n)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




