Minimum LCM and GCD possible among all possible sub-arrays

Given an array arr[] of N positive integers, the task is to find the minimum LCM and GCD between elements of all possible sub-array.
Examples:
Input: arr[] = {4, 4, 8}
Output: LCM = 4, GCD = 4
All possible sub-arrays are:
{4} -> LCM = 4, GCD = 4
{8} -> LCM = 8, GCD = 8
{4, 8} -> LCM = 8, GCD = 4
Input: arr[] = {2, 66, 14, 521}
Output: LCM = 2, GCD = 1
Approach: We have to approach this problem greedily. It is obvious that when we decrease the number of elements then the LCM will become smaller and when we increase the number of elements then the GCD will become smaller. So we will take the smallest element of the array which is a single element and will be the required LCM. Now for GCD, minimum GCD will be the GCD of all the elements of the array.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to return minimum GCD// among all subarraysint minGCD(int arr[], int n){ int minGCD = 0; // Minimum GCD among all sub-arrays will be // the GCD of all the elements of the array for (int i = 0; i < n; i++) minGCD = __gcd(minGCD, arr[i]); return minGCD;}// Function to return minimum LCM// among all subarraysint minLCM(int arr[], int n){ int minLCM = arr[0]; // Minimum LCM among all sub-arrays will be // the minimum element from the array for (int i = 1; i < n; i++) minLCM = min(minLCM, arr[i]); return minLCM;}// Driver codeint main(){ int arr[] = { 2, 66, 14, 521 }; int n = sizeof(arr) / sizeof(arr[0]); cout << "LCM = " << minLCM(arr, n) << ", GCD = " << minGCD(arr, n); return 0;} |
Java
// Java implementation of the approachclass GFG{// Function to return minimum GCD// among all subarraysstatic int __gcd(int a, int b) { if (a == 0) return b; return __gcd(b % a, a); } static int minGCD(int arr[], int n){ int minGCD = 0; // Minimum GCD among all sub-arrays will be // the GCD of all the elements of the array for (int i = 0; i < n; i++) minGCD = __gcd(minGCD, arr[i]); return minGCD;}// Function to return minimum LCM// among all subarraysstatic int minLCM(int arr[], int n){ int minLCM = arr[0]; // Minimum LCM among all sub-arrays will be // the minimum element from the array for (int i = 1; i < n; i++) minLCM = Math.min(minLCM, arr[i]); return minLCM;}// Driver codepublic static void main(String[] args){ int arr[] = { 2, 66, 14, 521 }; int n = arr.length; System.out.println("LCM = " + minLCM(arr, n) + " GCD = "+minGCD(arr, n));}}// This code is contributed by Code_Mech. |
Python3
# Python3 implementation of the approach from math import gcd# Function to return minimum GCD # among all subarrays def minGCD(arr, n) : minGCD = 0; # Minimum GCD among all sub-arrays # will be the GCD of all the elements # of the array for i in range(n) : minGCD = gcd(minGCD, arr[i]); return minGCD; # Function to return minimum LCM # among all subarrays def minLCM(arr, n) : minLCM = arr[0]; # Minimum LCM among all sub-arrays # will be the minimum element from # the array for i in range(1, n) : minLCM = min(minLCM, arr[i]); return minLCM; # Driver code if __name__ == "__main__" : arr = [ 2, 66, 14, 521 ]; n = len(arr); print("LCM = ", minLCM(arr, n), ", GCD =", minGCD(arr, n)); # This code is contributed by Ryuga |
C#
// C# implementation of the approachusing System;class GFG{ // Function to return minimum GCD // among all subarrays static int __gcd(int a, int b) { if (a == 0) return b; return __gcd(b % a, a); } static int minGCD(int [] arr, int n) { int minGCD = 0; // Minimum GCD among all sub-arrays // will be the GCD of all the // elements of the array for (int i = 0; i < n; i++) minGCD = __gcd(minGCD, arr[i]); return minGCD; } // Function to return minimum LCM // among all subarrays static int minLCM(int [] arr, int n) { int minLCM = arr[0]; // Minimum LCM among all sub-arrays // will be the minimum element from // the array for (int i = 1; i < n; i++) minLCM = Math.Min(minLCM, arr[i]); return minLCM; } // Driver code public static void Main() { int [] arr = { 2, 66, 14, 521 }; int n = arr.Length; Console.WriteLine("LCM = " + minLCM(arr, n) + ", GCD = " + minGCD(arr, n)); }}// This code is contributed by ihritik. |
PHP
<?php// PHP implementation of the approach// Function to return minimum GCD// among all subarraysfunction __gcd($a, $b) { if ($a == 0) return $b; return __gcd($b % $a, $a); } function minGCD($arr, $n){ $minGCD = 0; // Minimum GCD among all sub-arrays // will be the GCD of all the // elements of the array for ($i = 0; $i < $n; $i++) $minGCD = __gcd($minGCD, $arr[$i]); return $minGCD;}// Function to return minimum LCM// among all subarraysfunction minLCM($arr, $n){ $minLCM = $arr[0]; // Minimum LCM among all sub-arrays // will be the minimum element from // the array for ($i = 1; $i < $n; $i++) $minLCM = min($minLCM, $arr[$i]); return $minLCM;}// Driver code$arr = array(2, 66, 14, 521 );$n = sizeof($arr);echo "LCM = " . minLCM($arr, $n) . ", ";echo "GCD = " . minGCD($arr, $n);// This code is contributed by ihritik.?> |
Javascript
<script>// javascript implementation of the approach // Function to return minimum GCD // among all subarrays function __gcd(a , b) { if (a == 0) return b; return __gcd(b % a, a); } function minGCD(arr , n) { var minGCD = 0; // Minimum GCD among all sub-arrays will be // the GCD of all the elements of the array for (i = 0; i < n; i++) minGCD = __gcd(minGCD, arr[i]); return minGCD; } // Function to return minimum LCM // among all subarrays function minLCM(arr , n) { var minLCM = arr[0]; // Minimum LCM among all sub-arrays will be // the minimum element from the array for (i = 1; i < n; i++) minLCM = Math.min(minLCM, arr[i]); return minLCM; } // Driver code var arr = [ 2, 66, 14, 521 ]; var n = arr.length; document.write("LCM = " + minLCM(arr, n) + " GCD = " + minGCD(arr, n));// This code contributed by umadevi9616 </script> |
LCM = 2, GCD = 1
Time Complexity: O(NlogN)
Auxiliary Space: O(1), since no extra space has been taken.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



