Minimum number of Factorials whose sum is equal to N

Given a number N (<1010), the task is to find the minimum number of factorials needed to represent N, as their sum. Also, print those factorials.
Examples:
Input: N = 30 Output: 2 24, 6 Explanation: Factorials needed to represent 30: 24, 6 Input: N = 150 Output: 3 120, 24, 6 Explanation: Factorials needed to represent 150: 120 24 6
Approach:
- In order to efficiently find the factorials which are needed to represent N as their sum, we can precompute the factorials till N (N < 1010) and store them in an array, for faster calculations.
- Then using Greedy Algorithm, we can take largest factorials from this array which can be added to represent N.
- Start from largest possible factorial and keep adding factorials while the remaining value is greater than 0.
- Below is the complete algorithm.
- Initialize result as empty
- find the largest factorial that is smaller than N
- Add found factorial to result. Subtract value of found factorial from N
- If N becomes 0, then print result. Else repeat steps 2 and 3 for new value of N
Below is the implementation of the above approach:
C++
// C++ program to find minimum number of factorials#include <bits/stdc++.h>#define ll long long intusing namespace std;// Array to calculate all factorials// less than or equal to N// Since there can be only 14 factorials// till 10^10// Hence the maximum size of fact[] is 14ll fact[14];// Store the actual size of fact[]int size = 1;// Function to precompute factorials till Nvoid preCompute(int N){ // Precomputing factorials fact[0] = 1; for (int i = 1; fact[i - 1] <= N; i++) { fact[i] = (fact[i - 1] * i); size++; }}// Function to find the minimum number// of factorials whose sum represents Nvoid findMin(int N){ // Precompute factorials preCompute(N); int originalN = N; // Initialize result vector<int> ans; // Traverse through all factorials for (int i = size - 1; i >= 0; i--) { // Find factorials while (N >= fact[i]) { N -= fact[i]; ans.push_back(fact[i]); } } // Print min count cout << ans.size() << "\n"; // Print result for (int i = 0; i < ans.size(); i++) cout << ans[i] << " ";}// Driver programint main(){ int n = 27; findMin(n); return 0;} |
Java
// Java program to find minimum number of factorialsimport java.util.*;class GFG{ // Array to calculate all factorials// less than or equal to N// Since there can be only 14 factorials// till 10^10// Hence the maximum size of fact[] is 14static int []fact = new int[14]; // Store the actual size of fact[]static int size = 1; // Function to precompute factorials till Nstatic void preCompute(int N){ // Precomputing factorials fact[0] = 1; for (int i = 1; fact[i - 1] <= N; i++) { fact[i] = (fact[i - 1] * i); size++; }} // Function to find the minimum number// of factorials whose sum represents Nstatic void findMin(int N){ // Precompute factorials preCompute(N); int originalN = N; // Initialize result Vector<Integer> ans = new Vector<Integer>(); // Traverse through all factorials for (int i = size - 1; i >= 0; i--) { // Find factorials while (N >= fact[i]) { N -= fact[i]; ans.add(fact[i]); } } // Print min count System.out.print(ans.size()+ "\n"); // Print result for (int i = 0; i < ans.size(); i++) System.out.print(ans.get(i)+ " ");} // Driver programpublic static void main(String[] args){ int n = 27; findMin(n);}}// This code is contributed by PrinciRaj1992 |
Python3
# Python3 program to find minimum number of factorials# Array to calculate all factorials# less than or equal to N# Since there can be only 14 factorials# till 10^10# Hence the maximum size of fact[] is 14fact = [0]*14# Store the actual size of fact[]size = 1# Function to precompute factorials till Ndef preCompute(N): global size # Precomputing factorials fact[0] = 1 i = 1 while fact[i - 1] <= N: fact[i] = fact[i - 1] * i size += 1 i += 1# Function to find the minimum number# of factorials whose sum represents Ndef findMin(N): # Precompute factorials preCompute(N) originalN = N # Initialize result ans = [] # Traverse through all factorials for i in range(size-1, -1, -1): # Find factorials while (N >= fact[i]): N -= fact[i] ans.append(fact[i]) # Print min count print(len(ans)) # Print result for i in ans: print(i, end=" ")# Driver programn = 27findMin(n)# This code is contributed by mohit kumar 29 |
C#
// C# program to find minimum number of factorialsusing System;using System.Collections.Generic;class GFG{ // Array to calculate all factorials// less than or equal to N// Since there can be only 14 factorials// till 10^10// Hence the maximum size of fact[] is 14static int []fact = new int[14]; // Store the actual size of fact[]static int size = 1; // Function to precompute factorials till Nstatic void preCompute(int N){ // Precomputing factorials fact[0] = 1; for (int i = 1; fact[i - 1] <= N; i++) { fact[i] = (fact[i - 1] * i); size++; }} // Function to find the minimum number// of factorials whose sum represents Nstatic void findMin(int N){ // Precompute factorials preCompute(N); int originalN = N; // Initialize result List<int> ans = new List<int>(); // Traverse through all factorials for (int i = size - 1; i >= 0; i--) { // Find factorials while (N >= fact[i]) { N -= fact[i]; ans.Add(fact[i]); } } // Print min count Console.Write(ans.Count+ "\n"); // Print result for (int i = 0; i < ans.Count; i++) Console.Write(ans[i]+ " ");} // Driver programpublic static void Main(String[] args){ int n = 27; findMin(n);}}// This code is contributed by PrinciRaj1992 |
Javascript
<script>// Javascript program to find minimum number of factorials// Array to calculate all factorials// less than or equal to N// Since there can be only 14 factorials// till 10^10// Hence the maximum size of fact[] is 14var fact = Array(14).fill(0);// Store the actual size of fact[]var size = 1;// Function to precompute factorials till Nfunction preCompute(N){ // Precomputing factorials fact[0] = 1; for (var i = 1; fact[i - 1] <= N; i++) { fact[i] = (fact[i - 1] * i); size++; }}// Function to find the minimum number// of factorials whose sum represents Nfunction findMin(N){ // Precompute factorials preCompute(N); var originalN = N; // Initialize result ans = []; // Traverse through all factorials for (var i = size - 1; i >= 0; i--) { // Find factorials while (N >= fact[i]) { N -= fact[i]; ans.push(fact[i]); } } // Print min count document.write(ans.length + "<br>"); // Print result for (var i = 0; i < ans.length; i++) document.write(ans[i] + " ");}// Driver programvar n = 27;findMin(n);// This code is contributed by rutvik_56.</script> |
Output:
3 24 2 1
Time Complexity: O(N * size)
Auxiliary Space: O(N * size)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



