Modular Exponentiation of Complex Numbers

Given four integers A, B, K, M. The task is to find (A + iB)K % M which is a complex number too. A + iB represents a complex number. Examples:
Input : A = 2, B = 3, K = 4, M = 5 Output: 1 + i*0 Input : A = 7, B = 3, K = 10, M = 97 Output: 25 + i*29
Prerequisite: Modular Exponentiation Approach: An efficient approach is similar to the modular exponentiation of a single number. Here, instead of a single we have two number A, B. So, pass a pair of integers as a parameter to the function instead of a single number. Below is the implementation of the above approach :
C++
#include <bits/stdc++.h>using namespace std;// Function to multiply two complex numbers modulo Mpair<int, int> Multiply (pair<int, int> p, pair<int, int> q, int M){ // Multiplication of two complex numbers is // (a + ib)(c + id) = (ac - bd) + i(ad + bc) int x = ((p.first * q.first) % M - (p.second * q.second) % M + M) % M; int y = ((p.first * q.second) % M + (p.second * q.first) % M) %M; // Return the multiplied value return {x, y};}// Function to calculate the complex modular exponentiationpair<int, int> compPow(pair<int, int> complex, int k, int M){ // Here, res is initialised to (1 + i0) pair<int, int> res = { 1, 0 }; while (k > 0) { // If k is odd if (k & 1) { // Multiply 'complex' with 'res' res = Multiply(res, complex, M); } // Make complex as complex*complex complex = Multiply(complex, complex, M); // Make k as k/2 k = k >> 1; } //Return the required answer return res;}// Driver codeint main(){ int A = 7, B = 3, k = 10, M = 97; // Function call pair<int, int> ans = compPow({A, B}, k, M); cout << ans.first << " + i" << ans.second; return 0;} |
Java
// Java implementation of the approachimport java.util.*;class GFG {static class pair { int first, second; public pair(int first, int second) { this.first = first; this.second = second; } } // Function to multiply two complex numbers modulo Mstatic pair Multiply (pair p, pair q, int M){ // Multiplication of two complex numbers is // (a + ib)(c + id) = (ac - bd) + i(ad + bc) int x = ((p.first * q.first) % M - (p.second * q.second) % M + M) % M; int y = ((p.first * q.second) % M + (p.second * q.first) % M) % M; // Return the multiplied value return new pair(x, y);}// Function to calculate the // complex modular exponentiationstatic pair compPow(pair complex, int k, int M){ // Here, res is initialised to (1 + i0) pair res = new pair(1, 0 ); while (k > 0) { // If k is odd if (k % 2 == 1) { // Multiply 'complex' with 'res' res = Multiply(res, complex, M); } // Make complex as complex*complex complex = Multiply(complex, complex, M); // Make k as k/2 k = k >> 1; } // Return the required answer return res;}// Driver codepublic static void main(String[] args){ int A = 7, B = 3, k = 10, M = 97; // Function call pair ans = compPow(new pair(A, B), k, M); System.out.println(ans.first + " + i" + ans.second); }}// This code is contributed by PrinciRaj1992 |
Python3
# Python3 implementation of the approach# Function to multiply two complex numbers modulo Mdef Multiply (p, q, M): # Multiplication of two complex numbers is # (a + ib)(c + id) = (ac - bd) + i(ad + bc) x = ((p[0] * q[0]) % M - \ (p[1] * q[1]) % M + M) % M y = ((p[0] * q[1]) % M + \ (p[1] * q[0]) % M) %M # Return the multiplied value return [x, y]# Function to calculate the# complex modular exponentiationdef compPow(complex, k, M): # Here, res is initialised to (1 + i0) res = [1, 0] while (k > 0): # If k is odd if (k & 1): # Multiply 'complex' with 'res' res = Multiply(res, complex, M) # Make complex as complex*complex complex = Multiply(complex, complex, M) # Make k as k/2 k = k >> 1 # Return the required answer return res# Driver codeif __name__ == '__main__': A = 7 B = 3 k = 10 M = 97 # Function call ans = compPow([A, B], k, M) print(ans[0], "+ i", end = "") print(ans[1]) # This code is contributed by# Surendra_Gangwar |
C#
// C# implementation of the approachusing System; class GFG {public class pair { public int first, second; public pair(int first, int second) { this.first = first; this.second = second; } } // Function to multiply two complex numbers modulo Mstatic pair Multiply (pair p, pair q, int M){ // Multiplication of two complex numbers is // (a + ib)(c + id) = (ac - bd) + i(ad + bc) int x = ((p.first * q.first) % M - (p.second * q.second) % M + M) % M; int y = ((p.first * q.second) % M + (p.second * q.first) % M) % M; // Return the multiplied value return new pair(x, y);}// Function to calculate the // complex modular exponentiationstatic pair compPow(pair complex, int k, int M){ // Here, res is initialised to (1 + i0) pair res = new pair(1, 0 ); while (k > 0) { // If k is odd if (k % 2 == 1) { // Multiply 'complex' with 'res' res = Multiply(res, complex, M); } // Make complex as complex*complex complex = Multiply(complex, complex, M); // Make k as k/2 k = k >> 1; } // Return the required answer return res;}// Driver codepublic static void Main(String[] args){ int A = 7, B = 3, k = 10, M = 97; // Function call pair ans = compPow(new pair(A, B), k, M); Console.WriteLine(ans.first + " + i" + ans.second); }}// This code is contributed by 29AjayKumar |
Javascript
function pair(first, second) { this.first = first; this.second = second;}function multiply(p, q, M) { // Multiplication of two complex numbers is // (a + ib)(c + id) = (ac - bd) + i(ad + bc) let x = ((p.first * q.first) % M - (p.second * q.second) % M + M) % M; let y = ((p.first * q.second) % M + (p.second * q.first) % M) % M; return new pair(x, y);}function compPow(complex, k, M) { let res = new pair(1, 0); while (k > 0) { if (k % 2 === 1) { res = multiply(res, complex, M); } complex = multiply(complex, complex, M); k = k >> 1; } return res;}let A = 7, B = 3, k = 10, M = 97;let ans = compPow(new pair(A, B), k, M);console.log(ans.first + " + i" + ans.second);// This code is contributed by abn95knd1. |
Output:
25 + i29
Time complexity: O(log k).
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



