Nodes at Kth level without duplicates in a Binary Tree

Given a binary tree with N nodes and an integer K, the task is to print nodes of the Kth level of a binary tree without duplicates.
Examples:
Input:
60 --- Level 0
/ \
50 30 --- Level 1
/ \ /
80 10 40 --- Level 2
K = 1
Output: 30 50
Input:
50 --- Level 0
/ \
60 70 --- Level 1
/ \ / \
90 40 40 20 --- Level 2
K = 2
Output: 20 40 90
Approach: The idea is to traverse the Binary Tree using the Level Order Traversal with the help of queue and if the Level of the Traversal is K then store all the Nodes of that Level in a Set such that there are no duplicate nodes at that level.
Algorithm:
- Initialize an Empty Queue to store the nodes at a level.
- Enqueue the Root node of the Binary Tree in the queue.
- Initialize the Level as 0, as the first level of the tree is supposed to be 0 here.
- Initialize the flag as 0 to check Kth level is reached or not.
- Iterate using a while loop until the queue is not empty.
- Find the size of the queue and store in a variable size to visit only the nodes of a current level.
- Iterate with another while loop until the size variable is not 0
- Deque a node from the queue and Enqueue its Left and right childs in the Queue.
- If the current level is equal to the K, then add the data of the node into the set and also set the flag.
- If flag is set then break the loop to not visit further levels, otherwise increment the current level by 1.
- Print the elements of the set with the help of iterator.
Explanation with Example:
Binary Tree -
50 --- Level 0
/ \
60 70 --- Level 1
/ \ / \
90 40 40 20 --- Level 2
K = 2
Initialize Queue and Set and append Root in queue
Step 1:
Queue = [50], Set = {}, Level = 0
As current Level is not equal to K,
Deque nodes from the queue and enqueue its child
Step 2:
Queue = [60, 70], Set = {}, Level = 1
As current level is not equal to K
Deque nodes one by one from the queue and enqueue its child
Step 3:
Queue = [90, 40, 40, 20], Set = {}, Level = 2
As the current level is equal to K
Deque all the nodes from the queue and add to the set
Set = {90, 40, 20}
Below is the implementation of the approach:
C++
// C++ implementation to print the // nodes of Kth Level without duplicates#include <bits/stdc++.h>using namespace std;// Structure of Binary Tree nodestruct node { int data; struct node* left; struct node* right;};// Function to create new// Binary Tree nodestruct node* newNode(int data){ struct node* temp = new struct node; temp->data = data; temp->left = nullptr; temp->right = nullptr; return temp;};// Function to print the nodes// of Kth Level without duplicatesvoid nodesAtKthLevel(struct node* root, int k){ // Condition to check if current // node is None if (root == nullptr) return; // Create Queue queue<struct node*> que; // Enqueue the root node que.push(root); // Create a set set<int> s; // Level to track // the current level int level = 0; int flag = 0; // Iterate the queue till its not empty while (!que.empty()) { // Calculate the number of nodes // in the current level int size = que.size(); // Process each node of the current // level and enqueue their left // and right child to the queue while (size--) { struct node* ptr = que.front(); que.pop(); // If the current level matches the // required level then add into set if (level == k) { // Flag initialized to 1 flag = 1; // Inserting node data in set s.insert(ptr->data); } else { // Traverse to the left child if (ptr->left) que.push(ptr->left); // Traverse to the right child if (ptr->right) que.push(ptr->right); } } // Increment the variable level // by 1 for each level level++; // Break out from the loop // if the Kth Level is reached if (flag == 1) break; } set<int>::iterator it; for (it = s.begin(); it != s.end(); ++it) { cout << *it << " "; } cout << endl;}// Driver codeint main(){ struct node* root = new struct node; // Tree Construction root = newNode(60); root->left = newNode(20); root->right = newNode(30); root->left->left = newNode(80); root->left->right = newNode(10); root->right->left = newNode(40); int level = 1; nodesAtKthLevel(root, level); return 0;} |
Java
// Java implementation to print the // nodes of Kth Level without duplicatesimport java.util.*;class GFG{ // Structure of Binary Tree nodestatic class node { int data; node left; node right;}; // Function to create new// Binary Tree nodestatic node newNode(int data){ node temp = new node(); temp.data = data; temp.left = null; temp.right = null; return temp;}; // Function to print the nodes// of Kth Level without duplicatesstatic void nodesAtKthLevel(node root, int k){ // Condition to check if current // node is None if (root == null) return; // Create Queue Queue<node> que = new LinkedList<node>(); // Enqueue the root node que.add(root); // Create a set HashSet<Integer> s = new HashSet<Integer>(); // Level to track // the current level int level = 0; int flag = 0; // Iterate the queue till its not empty while (!que.isEmpty()) { // Calculate the number of nodes // in the current level int size = que.size(); // Process each node of the current // level and enqueue their left // and right child to the queue while (size-- > 0) { node ptr = que.peek(); que.remove(); // If the current level matches the // required level then add into set if (level == k) { // Flag initialized to 1 flag = 1; // Inserting node data in set s.add(ptr.data); } else { // Traverse to the left child if (ptr.left!=null) que.add(ptr.left); // Traverse to the right child if (ptr.right!=null) que.add(ptr.right); } } // Increment the variable level // by 1 for each level level++; // Break out from the loop // if the Kth Level is reached if (flag == 1) break; } for (int it : s) { System.out.print(it+ " "); } System.out.println();} // Driver codepublic static void main(String[] args){ node root = new node(); // Tree Construction root = newNode(60); root.left = newNode(20); root.right = newNode(30); root.left.left = newNode(80); root.left.right = newNode(10); root.right.left = newNode(40); int level = 1; nodesAtKthLevel(root, level); }}// This code is contributed by PrinciRaj1992 |
Python3
# Python3 implementation to print the# nodes of Kth Level without duplicatesfrom collections import deque# A binary tree node has key, pointer to # left child and a pointer to right childclass Node: def __init__(self, key): self.data = key self.left = None self.right = None# Function to print the nodes# of Kth Level without duplicatesdef nodesAtKthLevel(root: Node, k: int): # Condition to check if current # node is None if root is None: return # Create Queue que = deque() # Enqueue the root node que.append(root) # Create a set s = set() # Level to track # the current level level = 0 flag = 0 # Iterate the queue till its not empty while que: # Calculate the number of nodes # in the current level size = len(que) # Process each node of the current # level and enqueue their left # and right child to the queue while size: ptr = que[0] que.popleft() # If the current level matches the # required level then add into set if level == k: # Flag initialized to 1 flag = 1 # Inserting node data in set s.add(ptr.data) else: # Traverse to the left child if ptr.left: que.append(ptr.left) # Traverse to the right child if ptr.right: que.append(ptr.right) size -= 1 # Increment the variable level # by 1 for each level level += 1 # Break out from the loop # if the Kth Level is reached if flag == 1: break for it in s: print(it, end = " ") print()# Driver Codeif __name__ == "__main__": # Tree Construction root = Node(60) root.left = Node(20) root.right = Node(30) root.left.left = Node(80) root.left.right = Node(10) root.right.left = Node(40) level = 1 nodesAtKthLevel(root, level)# This code is contributed by sanjeev2552 |
C#
// C# implementation to print the // nodes of Kth Level without duplicatesusing System;using System.Collections.Generic;class GFG{ // Structure of Binary Tree nodeclass node { public int data; public node left; public node right;}; // Function to create new// Binary Tree nodestatic node newNode(int data){ node temp = new node(); temp.data = data; temp.left = null; temp.right = null; return temp;} // Function to print the nodes// of Kth Level without duplicatesstatic void nodesAtKthLevel(node root, int k){ // Condition to check if current // node is None if (root == null) return; // Create Queue List<node> que = new List<node>(); // Enqueue the root node que.Add(root); // Create a set HashSet<int> s = new HashSet<int>(); // Level to track // the current level int level = 0; int flag = 0; // Iterate the queue till its not empty while (que.Count != 0) { // Calculate the number of nodes // in the current level int size = que.Count; // Process each node of the current // level and enqueue their left // and right child to the queue while (size-- > 0) { node ptr = que[0]; que.RemoveAt(0); // If the current level matches the // required level then add into set if (level == k) { // Flag initialized to 1 flag = 1; // Inserting node data in set s.Add(ptr.data); } else { // Traverse to the left child if (ptr.left != null) que.Add(ptr.left); // Traverse to the right child if (ptr.right != null) que.Add(ptr.right); } } // Increment the variable level // by 1 for each level level++; // Break out from the loop // if the Kth Level is reached if (flag == 1) break; } foreach (int it in s) { Console.Write(it+ " "); } Console.WriteLine();} // Driver codepublic static void Main(String[] args){ node root = new node(); // Tree Construction root = newNode(60); root.left = newNode(20); root.right = newNode(30); root.left.left = newNode(80); root.left.right = newNode(10); root.right.left = newNode(40); int level = 1; nodesAtKthLevel(root, level); }}// This code is contributed by 29AjayKumar |
Javascript
<script>// JavaScript implementation to print the // nodes of Kth Level without duplicates// Structure of Binary Tree nodeclass node { constructor() { this.data = 0; this.left = null; this.right = null; }}; // Function to create new// Binary Tree nodefunction newNode(data){ var temp = new node(); temp.data = data; temp.left = null; temp.right = null; return temp;} // Function to print the nodes// of Kth Level without duplicatesfunction nodesAtKthLevel(root, k){ // Condition to check if current // node is None if (root == null) return; // Create Queue var que = []; // Enqueue the root node que.push(root); // Create a set var s = new Set(); // Level to track // the current level var level = 0; var flag = 0; // Iterate the queue till its not empty while (que.length != 0) { // Calculate the number of nodes // in the current level var size = que.length; // Process each node of the current // level and enqueue their left // and right child to the queue while (size-- > 0) { var ptr = que[0]; que.shift(); // If the current level matches the // required level then add into set if (level == k) { // Flag initialized to 1 flag = 1; // Inserting node data in set s.add(ptr.data); } else { // Traverse to the left child if (ptr.left != null) que.push(ptr.left); // Traverse to the right child if (ptr.right != null) que.push(ptr.right); } } // Increment the variable level // by 1 for each level level++; // Break out from the loop // if the Kth Level is reached if (flag == 1) break; } for(var it of s) { document.write(it+ " "); } document.write("<br>");} // Driver codevar root = new node();// Tree Constructionroot = newNode(60);root.left = newNode(20);root.right = newNode(30);root.left.left = newNode(80);root.left.right = newNode(10);root.right.left = newNode(40);var level = 1;nodesAtKthLevel(root, level);</script> |
Output:
20 30
Performance Analysis:
- Time Complexity: As in the above approach in the worst case all the N nodes of the Tree are visited, So the Time complexity will be O(N)
- Space Complexity: As in the worst case at the bottom most level of the Tree it can have the maximum number of the nodes which is 2H-1 where H is the height of the Binary Tree, then Space complexity of the Binary Tree will be O(2H-1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




