Path with minimum XOR sum of edges in a directed graph

Given a directed graph with N nodes and E edges, a source S and a destination D nodes. The task is to find the path with the minimum XOR sum of edges from S to D. If there is no path from S to D then print -1.
Examples:
Input: N = 3, E = 3, Edges = {{{1, 2}, 5}, {{1, 3}, 9}, {{2, 3}, 1}}, S = 1, and D = 3
Output: 4
The path with smallest XOR of edges weight will be 1->2->3
with XOR sum as 5^1 = 4.Input: N = 3, E = 3, Edges = {{{3, 2}, 5}, {{3, 3}, 9}, {{3, 3}, 1}}, S = 1, and D = 3
Output: -1
Approach: The idea is to use Dijkstra’s shortest path algorithm with a slight variation. Below is the step-wise approach for the problem:
- Base Case: If the source node is equal to the destination then return 0.
- Initialise a priority-queue with source node and its weight as 0 and a visited array.
- While priority queue is not empty:
- Pop the top-most element from priority queue. Let’s call it as current node.
- Check if the current node is already visited with the help of the visited array, If yes then continue.
- If the current node is the destination node then return the XOR sum distance of the current node from the source node.
- Iterate all the nodes adjacent to current node and push into priority queue and their distance as XOR sum with the current distance and edge weight.
- Otherwise, there is no path from source to destination. Therefore, return -1
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to return the smallest// xor sum of edgesdouble minXorSumOfEdges( int s, int d, vector<vector<pair<int, int> > > gr){ // If the source is equal // to the destination if (s == d) return 0; // Initialise the priority queue set<pair<int, int> > pq; pq.insert({ 0, s }); // Visited array bool v[gr.size()] = { 0 }; // While the priority-queue // is not empty while (pq.size()) { // Current node int curr = pq.begin()->second; // Current xor sum of distance int dist = pq.begin()->first; // Popping the top-most element pq.erase(pq.begin()); // If already visited continue if (v[curr]) continue; // Marking the node as visited v[curr] = 1; // If it is a destination node if (curr == d) return dist; // Traversing the current node for (auto it : gr[curr]) pq.insert({ dist ^ it.second, it.first }); } // If no path exists return -1;}// Driver codeint main(){ int n = 3; // Graph as adjacency matrix vector<vector<pair<int, int> > > gr(n + 1); // Input edges gr[1].push_back({ 3, 9 }); gr[2].push_back({ 3, 1 }); gr[1].push_back({ 2, 5 }); // Source and destination int s = 1, d = 3; cout << minXorSumOfEdges(s, d, gr); return 0;} |
Java
// Java implementation of the approachimport java.util.PriorityQueue;import java.util.ArrayList;class Pair implements Comparable<Pair> { int first, second; public Pair(int first, int second) { this.first = first; this.second = second; } @Override public int compareTo(Pair p) { if (this.first == p.first) { return this.second - p.second; } return this.first - p.first; }}class GFG{// Function to return the smallest// xor sum of edgesstatic int minXorSumOfEdges(int s, int d, ArrayList<ArrayList<Pair>> gr) { // If the source is equal // to the destination if (s == d) return 0; // Initialise the priority queue PriorityQueue<Pair> pq = new PriorityQueue<>(); pq.add(new Pair(0, s)); // Visited array boolean[] v = new boolean[gr.size()]; // While the priority-queue // is not empty while (!pq.isEmpty()) { // Iterator<Pair> itr = pq.iterator(); // Current node Pair p = pq.poll(); int curr = p.second; // Current xor sum of distance int dist = p.first; // If already visited continue if (v[curr]) continue; // Marking the node as visited v[curr] = true; // If it is a destination node if (curr == d) return dist; // Traversing the current node for(Pair it : gr.get(curr)) pq.add(new Pair(dist ^ it.second, it.first)); } // If no path exists return -1;}// Driver codepublic static void main(String[] args) { int n = 3; // Graph as adjacency matrix ArrayList<ArrayList<Pair>> gr = new ArrayList<>(); for(int i = 0; i < n + 1; i++) { gr.add(new ArrayList<Pair>()); } // Input edges gr.get(1).add(new Pair(3, 9)); gr.get(2).add(new Pair(3, 1)); gr.get(1).add(new Pair(2, 5)); // Source and destination int s = 1, d = 3; System.out.println(minXorSumOfEdges(s, d, gr));}}// This code is contributed by sanjeev2552 |
Python3
# Python3 implementation of the approachfrom collections import deque# Function to return the smallest# xor sum of edgesdef minXorSumOfEdges(s, d, gr): # If the source is equal # to the destination if (s == d): return 0 # Initialise the priority queue pq = [] pq.append((0, s)) # Visited array v = [0] * len(gr) # While the priority-queue # is not empty while (len(pq) > 0): pq = sorted(pq) # Current node curr = pq[0][1] # Current xor sum of distance dist = pq[0][0] # Popping the top-most element del pq[0] # If already visited continue if (v[curr]): continue # Marking the node as visited v[curr] = 1 # If it is a destination node if (curr == d): return dist # Traversing the current node for it in gr[curr]: pq.append((dist ^ it[1], it[0])) # If no path exists return -1# Driver codeif __name__ == '__main__': n = 3 # Graph as adjacency matrix gr = [[] for i in range(n + 1)] # Input edges gr[1].append([ 3, 9 ]) gr[2].append([ 3, 1 ]) gr[1].append([ 2, 5 ]) # Source and destination s = 1 d = 3 print(minXorSumOfEdges(s, d, gr)) # This code is contributed by mohit kumar 29 |
C#
// C# implementation of the approachusing System;using System.Collections.Generic;class GFG { // Function to return the smallest // xor sum of edges static int minXorSumOfEdges(int s, int d, List<List<Tuple<int,int>>> gr) { // If the source is equal // to the destination if (s == d) return 0; // Initialise the priority queue List<Tuple<int,int>> pq = new List<Tuple<int,int>>(); pq.Add(new Tuple<int,int>(0, s)); // Visited array int[] v = new int[gr.Count]; // While the priority-queue // is not empty while (pq.Count > 0) { pq.Sort(); // Current node int curr = pq[0].Item2; // Current xor sum of distance int dist = pq[0].Item1; // Popping the top-most element pq.RemoveAt(0); // If already visited continue if(v[curr] != 0) continue; // Marking the node as visited v[curr] = 1; // If it is a destination node if (curr == d) return dist; // Traversing the current node foreach(Tuple<int,int> it in gr[curr]) { pq.Add(new Tuple<int,int>(dist ^ it.Item2, it.Item1)); } } // If no path exists return -1; } // Driver code static void Main() { int n = 3; // Graph as adjacency matrix List<List<Tuple<int,int>>> gr = new List<List<Tuple<int,int>>>(); for(int i = 0; i < n + 1; i++) { gr.Add(new List<Tuple<int,int>>()); } // Input edges gr[1].Add(new Tuple<int,int>(3, 9)); gr[2].Add(new Tuple<int,int>(3, 1)); gr[1].Add(new Tuple<int,int>(2, 5)); // Source and destination int s = 1; int d = 3; Console.WriteLine(minXorSumOfEdges(s, d, gr)); }}// This code is contributed by divyesh072019. |
Javascript
<script>// Javascript implementation of the approach// Function to return the smallest// xor sum of edgesfunction minXorSumOfEdges(s, d, gr){ // If the source is equal // to the destination if (s == d) return 0; // Initialise the priority queue let pq = []; pq.push([0, s]); // Visited array let v = new Array(gr.length); // While the priority-queue // is not empty while (pq.length != 0) { pq.sort(function(a, b){return a[0] - b[0];}); // Iterator<Pair> itr = pq.iterator(); // Current node let p = pq.shift(); let curr = p[1]; // Current xor sum of distance let dist = p[0]; // If already visited continue if (v[curr]) continue; // Marking the node as visited v[curr] = true; // If it is a destination node if (curr == d) return dist; // Traversing the current node for(let it = 0; it < gr[curr].length; it++) pq.push([dist ^ gr[curr][it][1], gr[curr][it][0]]); } // If no path exists return -1;}// Driver codelet n = 3; // Graph as adjacency matrixlet gr = [];for(let i = 0; i < n + 1; i++){ gr.push([]);}// Input edgesgr[1].push([3, 9]);gr[2].push([3, 1]);gr[1].push([2, 5]);// Source and destinationlet s = 1, d = 3;document.write(minXorSumOfEdges(s, d, gr));// This code is contributed by unknown2108</script> |
4
Time complexity: O((E + V) logV)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



