Print all Strings from array A[] having all strings from array B[] as subsequence

Given two arrays A[] and B[] consisting of strings, the task is to print the strings from array A[] having all strings in B[] as a subsequence.
Examples:
Input: A[] = {“zambiatek”, “mapple”, “twitter”, “table”, “Linkedin”}, B[] = {“e”, “l”}
Output: mapple table linkedin
Explanation: Both the strings “e” and “l” are subsets in “mapple”, “table”, “linkedin”.
Input: A[] = {“zambiatek”, “topcoder”, “leetcode”}, B[] = {“geek”, “ee”}
Output: zambiatek
Explanation: Each string in B[], {“geek”, “ee”} occurs in “zambiatek” only.
Naive Approach:
The simplest approach to solve the problem is to traverse array A[] and for every string, check if all the strings in array B[] are present in it as a subsequence or not.
Time complexity: O(N2 * L), where length denotes the maximum length of a string in array A[]
Auxiliary Space: O(1)
Efficient Approach:
To optimize the above approach, follow the steps below:
- Initialize a matrix A_fre[][], in which A_fre[i] stores the frequency of each character in ith string.
- Initialize B_fre[] to store frequency of all characters in the strings in array B[].
- Traverse over array A[] and for every string, check if a character has more frequency in the strings of array B[] than in ith string in A[], i.e.
if A_fre[i][j] < B_fre[j], where
A_fre[i][j]: Frequency of the character with ASCII value (‘a’ + j) in ith string in A[].
B_fre[j]: Frequency of the character with ASCII value (‘a’ + j) in the strings of B[].
- then that string has at least one string in B[] which is not its subsequence.
- If the above condition is not satisfied for all characters for any string in A[], print that string as an answer.
- After checking all strings in A[], if no string is found to be having all strings in B[] as its proper subset, print -1.
Below is the implementation of the above approach:
C++
// C++ Program to implement the// above approach#include <bits/stdc++.h>using namespace std;// Function to find strings from A[]// having all strings in B[] as subsequencevoid UniversalSubset(vector<string> A, vector<string> B){ // Calculate respective sizes int n1 = A.size(); int n2 = B.size(); // Stores the answer vector<string> res; // Stores the frequency of each // character in strings of A[] int A_fre[n1][26]; for (int i = 0; i < n1; i++) { for (int j = 0; j < 26; j++) A_fre[i][j] = 0; } // Compute the frequencies // of characters of all strings for (int i = 0; i < n1; i++) { for (int j = 0; j < A[i].size(); j++) { A_fre[i][A[i][j] - 'a']++; } } // Stores the frequency of each // character in strings of B[] // each character of a string in B[] int B_fre[26] = { 0 }; for (int i = 0; i < n2; i++) { int arr[26] = { 0 }; for (int j = 0; j < B[i].size(); j++) { arr[B[i][j] - 'a']++; B_fre[B[i][j] - 'a'] = max(B_fre[B[i][j] - 'a'], arr[B[i][j] - 'a']); } } for (int i = 0; i < n1; i++) { int flag = 0; for (int j = 0; j < 26; j++) { // If the frequency of a character // in B[] exceeds that in A[] if (A_fre[i][j] < B_fre[j]) { // A string exists in B[] which // is not a proper subset of A[i] flag = 1; break; } } // If all strings in B[] are // proper subset of A[] if (flag == 0) // Push the string in // resultant vector res.push_back(A[i]); } // If any string is found if (res.size()) { // Print those strings for (int i = 0; i < res.size(); i++) { for (int j = 0; j < res[i].size(); j++) cout << res[i][j]; } cout << " "; } // Otherwise else cout << "-1";}// Driver codeint main(){ vector<string> A = { "zambiatek", "topcoder", "leetcode" }; vector<string> B = { "geek", "ee" }; UniversalSubset(A, B); return 0;} |
Java
// Java program to implement // the above approach import java.util.*;class GFG { // Function to find strings from A[] // having all strings in B[] as subsequence static void UniversalSubset(List<String> A, List<String> B) { // Calculate respective sizes int n1 = A.size(); int n2 = B.size(); // Stores the answer List<String> res = new ArrayList<>(); // Stores the frequency of each // character in strings of A[] int[][] A_fre = new int[n1][26]; for(int i = 0; i < n1; i++) { for(int j = 0; j < 26; j++) A_fre[i][j] = 0; } // Compute the frequencies // of characters of all strings for(int i = 0; i < n1; i++) { for(int j = 0; j < A.get(i).length(); j++) { A_fre[i][A.get(i).charAt(j) - 'a']++; } } // Stores the frequency of each // character in strings of B[] // each character of a string in B[] int[] B_fre = new int[26]; for(int i = 0; i < n2; i++) { int[] arr = new int[26] ; for(int j = 0; j < B.get(i).length(); j++) { arr[B.get(i).charAt(j) - 'a']++; B_fre[B.get(i).charAt(j) - 'a'] = Math.max( B_fre[B.get(i).charAt(j) - 'a'], arr[B.get(i).charAt(j) - 'a']); } } for(int i = 0; i < n1; i++) { int flag = 0; for(int j = 0; j < 26; j++) { // If the frequency of a character // in B[] exceeds that in A[] if (A_fre[i][j] < B_fre[j]) { // A string exists in B[] which // is not a proper subset of A[i] flag = 1; break; } } // If all strings in B[] are // proper subset of A[] if (flag == 0) // Push the string in // resultant vector res.add(A.get(i)); } // If any string is found if (res.size() != 0) { // Print those strings for(int i = 0; i < res.size(); i++) { for(int j = 0; j < res.get(i).length(); j++) System.out.print(res.get(i).charAt(j)); } System.out.print(" "); } // Otherwise else System.out.print("-1"); }// Driver codepublic static void main (String[] args) { List<String> A = Arrays.asList("zambiatek", "topcoder", "leetcode"); List<String> B = Arrays.asList("geek", "ee"); UniversalSubset(A, B); }}// This code is contributed by offbeat |
Python3
# Python3 program to implement# the above approach# Function to find strings from A[]# having all strings in B[] as subsequencedef UniversalSubset(A, B): # Calculate respective sizes n1 = len(A) n2 = len(B) # Stores the answer res = [] # Stores the frequency of each # character in strings of A[] A_freq = [[0 for x in range(26)] for y in range(n1)] # Compute the frequencies # of characters of all strings for i in range(n1): for j in range(len(A[i])): A_freq[i][ord(A[i][j]) - ord('a')] += 1 # Stores the frequency of each # character in strings of B[] # each character of a string in B[] B_freq = [0] * 26 for i in range(n2): arr = [0] * 26 for j in range(len(B[i])): arr[ord(B[i][j]) - ord('a')] += 1 B_freq[ord(B[i][j]) - ord('a')] = max( B_freq[ord(B[i][j]) - ord('a')], arr[ord(B[i][j]) - ord('a')]) for i in range(n1): flag = 0 for j in range(26): # If the frequency of a character # in B[] exceeds that in A[] if(A_freq[i][j] < B_freq[j]): # A string exists in B[] which # is not a proper subset of A[i] flag = 1 break # If all strings in B[] are # proper subset of A[] if(flag == 0): # Push the string in # resultant vector res.append(A[i]) # If any string is found if(len(res)): # Print those strings for i in range(len(res)): for j in range(len(res[i])): print(res[i][j], end = "") # Otherwise else: print(-1, end = "")# Driver codeif __name__ == '__main__': A = [ "zambiatek", "topcoder", "leetcode" ] B = [ "geek", "ee" ] UniversalSubset(A, B)# This code is contributed by Shivam Singh |
C#
// C# program to implement// the above approachusing System;using System.Collections.Generic;class GFG{// Function to find strings from []A// having all strings in []B as subsequencestatic void UniversalSubset(List<String> A, List<String> B){ // Calculate respective sizes int n1 = A.Count; int n2 = B.Count; // Stores the answer List<String> res = new List<String>(); // Stores the frequency of each // character in strings of []A int[,] A_fre = new int[n1, 26]; for(int i = 0; i < n1; i++) { for(int j = 0; j < 26; j++) A_fre[i, j] = 0; } // Compute the frequencies // of characters of all strings for(int i = 0; i < n1; i++) { for(int j = 0; j < A[i].Length; j++) { A_fre[i, A[i][j] - 'a']++; } } // Stores the frequency of each // character in strings of []B // each character of a string in []B int[] B_fre = new int[26]; for(int i = 0; i < n2; i++) { int[] arr = new int[26]; for(int j = 0; j < B[i].Length; j++) { arr[B[i][j] - 'a']++; B_fre[B[i][j] - 'a'] = Math.Max( B_fre[B[i][j] - 'a'], arr[B[i][j] - 'a']); } } for(int i = 0; i < n1; i++) { int flag = 0; for(int j = 0; j < 26; j++) { // If the frequency of a character // in []B exceeds that in []A if (A_fre[i, j] < B_fre[j]) { // A string exists in []B which // is not a proper subset of A[i] flag = 1; break; } } // If all strings in []B are // proper subset of []A if (flag == 0) // Push the string in // resultant vector res.Add(A[i]); } // If any string is found if (res.Count != 0) { // Print those strings for(int i = 0; i < res.Count; i++) { for(int j = 0; j < res[i].Length; j++) Console.Write(res[i][j]); } Console.Write(" "); } // Otherwise else Console.Write("-1");}// Driver codepublic static void Main(String[] args){ List<String> A = new List<String>(); A.Add("zambiatek"); A.Add("topcoder"); A.Add("leetcode"); List<String> B = new List<String>(); B.Add("geek"); B.Add("ee"); UniversalSubset(A, B);}}// This code is contributed by amal kumar choubey |
Javascript
<script> // Javascript Program to implement the// above approach// Function to find strings from A[]// having all strings in B[] as subsequencefunction UniversalSubset(A, B){ // Calculate respective sizes var n1 = A.length; var n2 = B.length; // Stores the answer var res = []; // Stores the frequency of each // character in strings of A[] var A_fre = Array.from( Array(n1), ()=> Array(26)); for (var i = 0; i < n1; i++) { for (var j = 0; j < 26; j++) A_fre[i][j] = 0; } // Compute the frequencies // of characters of all strings for (var i = 0; i < n1; i++) { for (var j = 0; j < A[i].length; j++) { A_fre[i][A[i].charCodeAt(j) - 'a'.charCodeAt(0)]++; } } // Stores the frequency of each // character in strings of B[] // each character of a string in B[] var B_fre = Array(26).fill(0); for (var i = 0; i < n2; i++) { var arr = Array(26).fill(0); for (var j = 0; j < B[i].length; j++) { arr[B[i].charCodeAt(j) - 'a'.charCodeAt(0)]++; B_fre[B[i].charCodeAt(j) - 'a'.charCodeAt(0)] = Math.max(B_fre[B[i].charCodeAt(j) - 'a'.charCodeAt(0)], arr[B[i].charCodeAt(j)- 'a'.charCodeAt(0)]); } } for (var i = 0; i < n1; i++) { var flag = 0; for (var j = 0; j < 26; j++) { // If the frequency of a character // in B[] exceeds that in A[] if (A_fre[i][j] < B_fre[j]) { // A string exists in B[] which // is not a proper subset of A[i] flag = 1; break; } } // If all strings in B[] are // proper subset of A[] if (flag == 0) // Push the string in // resultant vector res.push(A[i]); } // If any string is found if (res.length>0) { // Print those strings for (var i = 0; i < res.length; i++) { for (var j = 0; j < res[i].length; j++) document.write( res[i][j]); } document.write( " "); } // Otherwise else document.write( "-1");}// Driver codevar A = ["zambiatek", "topcoder", "leetcode" ];var B = ["geek", "ee" ];UniversalSubset(A, B);</script> |
zambiatek
Time Complexity: O(N * * L), where length denotes the maximum length of a string in array A[].
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



