Program to determine the Quadrant of a Complex number

Given a complex number in the form of the string str, the task is to determine the quadrant of the cartesian plane in which this complex number lies.
Examples:
Input: str = “1 + 1i”
Output: Quadrant 1Input: str = “0 + 0i”
Output: Origin
Approach:
The idea is to first find the real and imaginary parts of a complex number. Let’s say the point is (x, iy), then the following table illustrates the position of the point with respect to the coordinates:
Below is the implementation of the above approach:
C++
// C++ program to determine the quadrant// of a complex number#include <bits/stdc++.h>using namespace std;// Function to determine the quadrant// of a complex numbervoid quadrant(string s){ int l = s.length(); int i; // Storing the index of '+' if (s.find('+') < l) { i = s.find('+'); } // Storing the index of '-' else { i = s.find('-'); } // Finding the real part // of the complex number string real = s.substr(0, i); // Finding the imaginary part // of the complex number string imaginary = s.substr(i + 1, l - 1); int x = stoi(real); int y = stoi(imaginary); if (x > 0 and y > 0) cout << "Quadrant 1"; else if (x < 0 and y > 0) cout << "Quadrant 2"; else if (x < 0 and y < 0) cout << "Quadrant 3"; else if (x > 0 and y < 0) cout << "Quadrant 4"; else if (x == 0 and y > 0) cout << "Lies on positive" << " Imaginary axis"; else if (x == 0 and y < 0) cout << "Lies on negative" << " Imaginary axis"; else if (y == 0 and x < 0) cout << "Lies on negative" << " X-axis"; else if (y == 0 and x > 0) cout << "Lies on positive" << " X-axis"; else cout << "Lies on the Origin";}// Driver codeint main(){ string s = "5+3i"; quadrant(s); return 0;} |
Java
// Java program to determine the quadrant// of a complex numberimport java.util.*;class GFG{ // Function to determine the quadrant// of a complex numberstatic void quadrant(String s){ int l = s.length(); int i; // Storing the index of '+' if (s.contains("+")) { i = s.indexOf('+'); } // Storing the index of '-' else { i = s.indexOf('-'); } // Finding the real part // of the complex number String real = s.substring(0, i); // Finding the imaginary part // of the complex number String imaginary = s.substring(i + 1, l - 1); int x = Integer.valueOf(real); int y = Integer.valueOf(imaginary); if (x > 0 && y > 0) System.out.print("Quadrant 1"); else if (x < 0 && y > 0) System.out.print("Quadrant 2"); else if (x < 0 && y < 0) System.out.print("Quadrant 3"); else if (x > 0 && y < 0) System.out.print("Quadrant 4"); else if (x == 0 && y > 0) System.out.print("Lies on positive" + " Imaginary axis"); else if (x == 0 && y < 0) System.out.print("Lies on negative" + " Imaginary axis"); else if (y == 0 && x < 0) System.out.print("Lies on negative" + " X-axis"); else if (y == 0 && x > 0) System.out.print("Lies on positive" + " X-axis"); else System.out.print("Lies on the Origin");} // Driver codepublic static void main(String[] args){ String s = "5+3i"; quadrant(s);}}// This code is contributed by Rajput-Ji |
Python3
# Python 3 program to determine the quadrant# of a complex number# Function to determine the quadrant# of a complex numberdef quadrant(s): l = len(s) # Storing the index of '+' if ('+' in s): i = s.index('+') # Storing the index of '-' else: i = s.index('-') # Finding the real part # of the complex number real = s[0:i] # Finding the imaginary part # of the complex number imaginary = s[i + 1:l - 1] x = int(real) y = int(imaginary) if (x > 0 and y > 0): print("Quadrant 1") elif(x < 0 and y > 0): print("Quadrant 2") elif (x < 0 and y < 0): print("Quadrant 3") elif (x > 0 and y < 0): print("Quadrant 4") elif (x == 0 and y > 0): print("Lies on positive","Imaginary axis") elif (x == 0 and y < 0): print("Lies on negative","Imaginary axis") elif (y == 0 and x < 0): print("Lies on negative","X-axis") elif (y == 0 and x > 0): print("Lies on positive","X-axis") else: print("Lies on the Origin")# Driver codeif __name__ == '__main__': s = "5+3i" quadrant(s) # This code is contributed by Surendra_Gangwar |
C#
// C# program to determine the quadrant// of a complex numberusing System;class GFG{ // Function to determine the quadrant// of a complex numberstatic void quadrant(String s){ int l = s.Length; int i; // Storing the index of '+' if (s.Contains("+")) { i = s.IndexOf('+'); } // Storing the index of '-' else { i = s.IndexOf('-'); } // Finding the real part // of the complex number String real = s.Substring(0, i); // Finding the imaginary part // of the complex number String imaginary = s.Substring(i + 1, l - 2 - i); int x = Int32.Parse(real); int y = Int32.Parse(imaginary); if (x > 0 && y > 0) Console.Write("Quadrant 1"); else if (x < 0 && y > 0) Console.Write("Quadrant 2"); else if (x < 0 && y < 0) Console.Write("Quadrant 3"); else if (x > 0 && y < 0) Console.Write("Quadrant 4"); else if (x == 0 && y > 0) Console.Write("Lies on positive" + " Imaginary axis"); else if (x == 0 && y < 0) Console.Write("Lies on negative" + " Imaginary axis"); else if (y == 0 && x < 0) Console.Write("Lies on negative" + " X-axis"); else if (y == 0 && x > 0) Console.Write("Lies on positive" + " X-axis"); else Console.Write("Lies on the Origin");} // Driver codepublic static void Main(String[] args){ String s = "5+3i"; quadrant(s);}} // This code is contributed by sapnasingh4991 |
Javascript
<script>// Javascript program// Function to determine the quadrant// of a complex numberfunction quadrant(s){ var l = s.length; var i =0 ; // Storing the index of '+' if (s.indexOf("+") != -1) { i = s.indexOf("+"); } // Storing the index of '-' else { i = s.indexOf("-"); } // Finding the real part // of the complex number var real = s.substr(0, i); // Finding the imaginary part // of the complex number var imaginary = s.substr(i + 1, l - 1); var x = parseInt(real); var y = parseInt(imaginary); if (x > 0 && y > 0) document.write("Quadrant 1"); else if (x < 0 && y > 0) document.write("Quadrant 2"); else if (x < 0 && y < 0) document.write( "Quadrant 3"); else if (x > 0 && y < 0) document.write( "Quadrant 4"); else if (x == 0 && y > 0) document.write( "Lies on positive"+" Imaginary axis"); else if (x == 0 && y < 0) document.write( "Lies on negative"+" Imaginary axis"); else if (y == 0 && x < 0) document.write( "Lies on negative"+" X-axis"); else if (y == 0 && x > 0) document.write( "Lies on positive"+" X-axis"); else document.write( "Lies on the Origin");} var s = "5+3i";quadrant(s);</script> |
Output:
Quadrant 1
Time complexity: O(n) where n is the size of the given string
Auxiliary space: O(n) because extra space for string real and imaginary is being used
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




