Sideways traversal of a Complete Binary Tree

Given a Complete Binary Tree, the task is to print the elements in the following pattern. Let’s consider the tree to be:
The tree is traversed in the following way:
The output for the above tree is:
1 3 7 11 10 9 8 4 5 6 2
Approach: The idea is to use the modified breadth first search function to store all the nodes at every level in an array of vector. Along with it, the maximum level up to which the tree needs to be traversed is also stored in a variable. After this precomputation task, the following steps are followed to get the required answer:
- Create a vector tree[] where tree[i] will store all the nodes of the tree at the level i.
- Take an integer variable k which keeps the track of the level number that is being traversed and another integer variable path which keeps the track of the number of cycles that have been completed. A flag variable is also created to keep the track of the direction in which the tree is being traversed.
- Now, start printing the rightmost nodes at each level until the maximum level is reached.
- Since the maximum level is reached, the direction has to be changed. In the last level, print elements from rightmost to left. And the value of maxLevel variable has to be decremented.
- As the tree is being traversed from the lower level to the upper level, the rightmost elements are printed. Since in the next iteration, the maxlevel value has been changed, it makes sure that already visited nodes in the last level are not traversed again.
Below is the implementation of the above approach:
C++
// C++ program to print sideways// traversal of complete binary tree#include <bits/stdc++.h>using namespace std;const int sz = 1e5;int maxLevel = 0;// Adjacency list representation// of the treevector<int> tree[sz + 1];// Boolean array to mark all the// vertices which are visitedbool vis[sz + 1];// Integer array to store the level// of each nodeint level[sz + 1];// Array of vector where ith index// stores all the nodes at level ivector<int> nodes[sz + 1];// Utility function to create an// edge between two verticesvoid addEdge(int a, int b){ // Add a to b's list tree[a].push_back(b); // Add b to a's list tree[b].push_back(a);}// Modified Breadth-First Functionvoid bfs(int node){ // Create a queue of {child, parent} queue<pair<int, int> > qu; // Push root node in the front of // the queue and mark as visited qu.push({ node, 0 }); nodes[0].push_back(node); vis[node] = true; level[1] = 0; while (!qu.empty()) { pair<int, int> p = qu.front(); // Dequeue a vertex from queue qu.pop(); vis[p.first] = true; // Get all adjacent vertices of the dequeued // vertex s. If any adjacent has not // been visited then enqueue it for (int child : tree[p.first]) { if (!vis[child]) { qu.push({ child, p.first }); level[child] = level[p.first] + 1; maxLevel = max(maxLevel, level[child]); nodes[level[child]].push_back(child); } } }}// Utility Function to display the patternvoid display(){ // k represents the level no. // cycle represents how many // cycles has been completed int k = 0, path = 0; int condn = (maxLevel) / 2 + 1; bool flag = true; // While there are nodes left to traverse while (condn--) { if (flag) { // Traversing whole level from // left to right int j = nodes[k].size() - 1; for (j = 0; j < nodes[k].size() - path; j++) cout << nodes[k][j] << " "; // Moving to new level k++; // Traversing rightmost unvisited // element in path as we // move up to down while (k < maxLevel) { j = nodes[k].size() - 1; cout << nodes[k][j - path] << " "; k++; } j = nodes[k].size() - 1; if (k > path) for (j -= path; j >= 0; j--) cout << nodes[k][j] << " "; // Setting value of new maximum // level upto which we have to traverse // next time maxLevel--; // Updating from which level to // start new path k--; path++; flag = !flag; } else { // Traversing each element of remaining // last level from left to right int j = nodes[k].size() - 1; for (j = 0; j < nodes[k].size() - path; j++) cout << nodes[k][j] << " "; // Decrementing value of Max level maxLevel--; k--; // Traversing rightmost unvisited // element in path as we // move down to up while (k > path) { int j = nodes[k].size() - 1; cout << nodes[k][j - path] << " "; k--; } j = nodes[k].size() - 1; if (k == path) for (j -= path; j >= 0; j--) cout << nodes[k][j] << " "; path++; // Updating the level number from which // a new cycle has to be started k++; flag = !flag; } }}// Driver codeint main(){ // Initialising the above mentioned // complete binary tree for (int i = 1; i <= 5; i++) { // Adding edge to a binary tree addEdge(i, 2 * i); addEdge(i, 2 * i + 1); } // Calling modified bfs function bfs(1); display(); return 0;} |
Java
// Java program to print sideways// traversal of complete binary treeimport java.util.*;class GFG{ static class pair{ int first, second; public pair(int first, int second) { this.first = first; this.second = second; } } static int sz = (int) 1e5;static int maxLevel = 0;// Adjacency list representation// of the treestatic Vector<Integer> []tree = new Vector[sz + 1];// Boolean array to mark all the// vertices which are visitedstatic boolean []vis = new boolean[sz + 1];// Integer array to store the level// of each nodestatic int []level = new int[sz + 1];// Array of vector where ith index// stores all the nodes at level istatic Vector<Integer> []nodes = new Vector[sz + 1];// Utility function to create an// edge between two verticesstatic void addEdge(int a, int b){ // Add a to b's list tree[a].add(b); // Add b to a's list tree[b].add(a);}// Modified Breadth-First Functionstatic void bfs(int node){ // Create a queue of {child, parent} Queue<pair > qu = new LinkedList<>(); // Push root node in the front of // the queue and mark as visited qu.add(new pair( node, 0 )); nodes[0].add(node); vis[node] = true; level[1] = 0; while (!qu.isEmpty()) { pair p = qu.peek(); // Dequeue a vertex from queue qu.remove(); vis[p.first] = true; // Get all adjacent vertices of the dequeued // vertex s. If any adjacent has not // been visited then enqueue it for (int child : tree[p.first]) { if (!vis[child]) { qu.add(new pair( child, p.first )); level[child] = level[p.first] + 1; maxLevel = Math.max(maxLevel, level[child]); nodes[level[child]].add(child); } } }}// Utility Function to display the patternstatic void display(){ // k represents the level no. // cycle represents how many // cycles has been completed int k = 0, path = 0; int condn = (maxLevel) / 2 + 1; boolean flag = true; // While there are nodes left to traverse while (condn-- > 0) { if (flag) { // Traversing whole level from // left to right int j = nodes[k].size() - 1; for (j = 0; j < nodes[k].size() - path; j++) System.out.print(nodes[k].get(j)+ " "); // Moving to new level k++; // Traversing rightmost unvisited // element in path as we // move up to down while (k < maxLevel) { j = nodes[k].size() - 1; System.out.print(nodes[k].get(j - path)+ " "); k++; } j = nodes[k].size() - 1; if (k > path) for (j -= path; j >= 0; j--) System.out.print(nodes[k].get(j)+ " "); // Setting value of new maximum // level upto which we have to traverse // next time maxLevel--; // Updating from which level to // start new path k--; path++; flag = !flag; } else { // Traversing each element of remaining // last level from left to right int j = nodes[k].size() - 1; for (j = 0; j < nodes[k].size() - path; j++) System.out.print(nodes[k].get(j)+ " "); // Decrementing value of Max level maxLevel--; k--; // Traversing rightmost unvisited // element in path as we // move down to up while (k > path) { int c = nodes[k].size() - 1; System.out.print(nodes[k].get(c - path)+ " "); k--; } j = nodes[k].size() - 1; if (k == path) for (j -= path; j >= 0; j--) System.out.print(nodes[k].get(j)+ " "); path++; // Updating the level number from which // a new cycle has to be started k++; flag = !flag; } }}// Driver codepublic static void main(String[] args){ for (int i = 0; i < tree.length; i++) { tree[i] = new Vector<>(); nodes[i] = new Vector<>(); } // Initialising the above mentioned // complete binary tree for (int i = 1; i <= 5; i++) { // Adding edge to a binary tree addEdge(i, 2 * i); addEdge(i, 2 * i + 1); } // Calling modified bfs function bfs(1); display();}}// This code is contributed by 29AjayKumar |
Python3
# Python3 program to print sideways# traversal of complete binary treefrom collections import dequesz = 10**5maxLevel = 0# Adjacency list representation# of the treetree = [[] for i in range(sz + 1)]# Boolean array to mark all the# vertices which are visitedvis = [False]*(sz + 1)# Integer array to store the level# of each nodelevel = [0]*(sz + 1)# Array of vector where ith index# stores all the nodes at level inodes = [[] for i in range(sz + 1)]# Utility function to create an# edge between two verticesdef addEdge(a, b): # Add a to b's list tree[a].append(b) # Add b to a's list tree[b].append(a)# Modified Breadth-First Functiondef bfs(node): global maxLevel # Create a queue of {child, parent} qu = deque() # Push root node in the front of # the queue and mark as visited qu.append([node, 0]) nodes[0].append(node) vis[node] = True level[1] = 0 while (len(qu) > 0): p = qu.popleft() # Dequeue a vertex from queue vis[p[0]] = True # Get all adjacent vertices of the dequeued # vertex s. If any adjacent has not # been visited then enqueue it for child in tree[p[0]]: if (vis[child] == False): qu.append([child, p[0]]) level[child] = level[p[0]] + 1 maxLevel = max(maxLevel, level[child]) nodes[level[child]].append(child)# Utility Function to display the patterndef display(): global maxLevel # k represents the level no. # cycle represents how many # cycles has been completed k = 0 path = 0 condn = (maxLevel) // 2 + 1 flag = True # While there are nodes left to traverse while (condn): if (flag): # Traversing whole level from # left to right j = len(nodes[k]) - 1 for j in range(len(nodes[k])- path): print(nodes[k][j],end=" ") # Moving to new level k += 1 # Traversing rightmost unvisited # element in path as we # move up to down while (k < maxLevel): j = len(nodes[k]) - 1 print(nodes[k][j - path], end=" ") k += 1 j = len(nodes[k]) - 1 if (k > path): while j >= 0: j -= path print(nodes[k][j], end=" ") j -= 1 # Setting value of new maximum # level upto which we have to traverse # next time maxLevel -= 1 # Updating from which level to # start new path k -= 1 path += 1 flag = not flag else: # Traversing each element of remaining # last level from left to right j = len(nodes[k]) - 1 for j in range(len(nodes[k]) - path): print(nodes[k][j], end=" ") # Decrementing value of Max level maxLevel -= 1 k -= 1 # Traversing rightmost unvisited # element in path as we # move down to up while (k > path): j = len(nodes[k]) - 1 print(nodes[k][j - path], end=" ") k -= 1 j = len(nodes[k]) - 1 if (k == path): while j >= 0: j -= path print(nodes[k][j],end=" ") j -= 1 path += 1 # Updating the level number from which # a new cycle has to be started k += 1 flag = not flag condn -= 1# Driver codeif __name__ == '__main__': # Initialising the above mentioned # complete binary tree for i in range(1,6): # Adding edge to a binary tree addEdge(i, 2 * i) addEdge(i, 2 * i + 1) # Calling modified bfs function bfs(1) display()# This code is contributed by mohit kumar 29 |
C#
// C# program to print sideways// traversal of complete binary treeusing System;using System.Collections.Generic;class GFG{ class pair{ public int first, second; public pair(int first, int second) { this.first = first; this.second = second; } } static int sz = (int) 1e5;static int maxLevel = 0; // Adjacency list representation// of the treestatic List<int> []tree = new List<int>[sz + 1]; // Boolean array to mark all the// vertices which are visitedstatic bool []vis = new bool[sz + 1]; // int array to store the level// of each nodestatic int []level = new int[sz + 1]; // Array of vector where ith index// stores all the nodes at level istatic List<int> []nodes = new List<int>[sz + 1]; // Utility function to create an// edge between two verticesstatic void addEdge(int a, int b){ // Add a to b's list tree[a].Add(b); // Add b to a's list tree[b].Add(a);} // Modified Breadth-First Functionstatic void bfs(int node){ // Create a queue of {child, parent} Queue<pair> qu = new Queue<pair>(); // Push root node in the front of // the queue and mark as visited qu.Enqueue(new pair( node, 0 )); nodes[0].Add(node); vis[node] = true; level[1] = 0; while (qu.Count != 0) { pair p = qu.Peek(); // Dequeue a vertex from queue qu.Dequeue(); vis[p.first] = true; // Get all adjacent vertices of the dequeued // vertex s. If any adjacent has not // been visited then enqueue it foreach (int child in tree[p.first]) { if (!vis[child]) { qu.Enqueue(new pair( child, p.first )); level[child] = level[p.first] + 1; maxLevel = Math.Max(maxLevel, level[child]); nodes[level[child]].Add(child); } } }} // Utility Function to display the patternstatic void display(){ // k represents the level no. // cycle represents how many // cycles has been completed int k = 0, path = 0; int condn = (maxLevel) / 2 + 1; bool flag = true; // While there are nodes left to traverse while (condn-- > 0) { if (flag) { // Traversing whole level from // left to right int j = nodes[k].Count - 1; for (j = 0; j < nodes[k].Count - path; j++) Console.Write(nodes[k][j]+ " "); // Moving to new level k++; // Traversing rightmost unvisited // element in path as we // move up to down while (k < maxLevel) { j = nodes[k].Count - 1; Console.Write(nodes[k][j - path]+ " "); k++; } j = nodes[k].Count - 1; if (k > path) for (j -= path; j >= 0; j--) Console.Write(nodes[k][j]+ " "); // Setting value of new maximum // level upto which we have to traverse // next time maxLevel--; // Updating from which level to // start new path k--; path++; flag = !flag; } else { // Traversing each element of remaining // last level from left to right int j = nodes[k].Count - 1; for (j = 0; j < nodes[k].Count - path; j++) Console.Write(nodes[k][j]+ " "); // Decrementing value of Max level maxLevel--; k--; // Traversing rightmost unvisited // element in path as we // move down to up while (k > path) { int c = nodes[k].Count - 1; Console.Write(nodes[k]+ " "); k--; } j = nodes[k].Count - 1; if (k == path) for (j -= path; j >= 0; j--) Console.Write(nodes[k][j]+ " "); path++; // Updating the level number from which // a new cycle has to be started k++; flag = !flag; } }} // Driver codepublic static void Main(String[] args){ for (int i = 0; i < tree.Length; i++) { tree[i] = new List<int>(); nodes[i] = new List<int>(); } // Initialising the above mentioned // complete binary tree for (int i = 1; i <= 5; i++) { // Adding edge to a binary tree addEdge(i, 2 * i); addEdge(i, 2 * i + 1); } // Calling modified bfs function bfs(1); display();}}// This code contributed by PrinciRaj1992 |
Javascript
<script>// Javascript program to print sideways// traversal of complete binary treelet sz = 1e5;let maxLevel = 0;// Adjacency list representation// of the treelet tree = new Array(sz + 1);// Boolean array to mark all the// vertices which are visitedlet vis = new Array(sz + 1);// Integer array to store the level// of each nodelet level = new Array(sz + 1);// Array of vector where ith index// stores all the nodes at level ilet nodes = new Array(sz + 1);// Utility function to create an// edge between two verticesfunction addEdge(a,b){ // Add a to b's list tree[a].push(b); // Add b to a's list tree[b].push(a);}// Modified Breadth-First Functionfunction bfs(node){ // Create a queue of {child, parent} let qu = []; // Push root node in the front of // the queue and mark as visited qu.push([ node, 0 ]); nodes[0].push(node); vis[node] = true; level[1] = 0; while (qu.length!=0) { let p = qu[0]; // Dequeue a vertex from queue qu.shift(); vis[p[0]] = true; // Get all adjacent vertices of the dequeued // vertex s. If any adjacent has not // been visited then enqueue it for (let child=0;child<tree[p[0]].length;child++) { if (!vis[tree[p[0]][child]]) { qu.push([ tree[p[0]][child], p[0] ]); level[tree[p[0]][child]] = level[p[0]] + 1; maxLevel = Math.max(maxLevel, level[tree[p[0]][child]]); nodes[level[tree[p[0]][child]]].push(tree[p[0]][child]); } } }}// Utility Function to display the patternfunction display(){ // k represents the level no. // cycle represents how many // cycles has been completed let k = 0, path = 0; let condn = Math.floor((maxLevel) / 2) + 1; let flag = true; // While there are nodes left to traverse while (condn-- > 0) { if (flag) { // Traversing whole level from // left to right let j = nodes[k].length - 1; for (j = 0; j < nodes[k].length - path; j++) document.write(nodes[k][j]+ " "); // Moving to new level k++; // Traversing rightmost unvisited // element in path as we // move up to down while (k < maxLevel) { j = nodes[k].length - 1; document.write(nodes[k][j - path]+ " "); k++; } j = nodes[k].length - 1; if (k > path) for (j -= path; j >= 0; j--) document.write(nodes[k][j]+ " "); // Setting value of new maximum // level upto which we have to traverse // next time maxLevel--; // Updating from which level to // start new path k--; path++; flag = !flag; } else { // Traversing each element of remaining // last level from left to right let j = nodes[k].length - 1; for (j = 0; j < nodes[k].length - path; j++) document.write(nodes[k][j]+ " "); // Decrementing value of Max level maxLevel--; k--; // Traversing rightmost unvisited // element in path as we // move down to up while (k > path) { let c = nodes[k].length - 1; document.write(nodes[k]+ " "); k--; } j = nodes[k].length - 1; if (k == path) for (j -= path; j >= 0; j--) document.write(nodes[k][j]+ " "); path++; // Updating the level number from which // a new cycle has to be started k++; flag = !flag; } }}// Driver codefor (let i = 0; i < tree.length; i++) { tree[i] = []; nodes[i] = []; vis[i]=false; level[i]=0; } // Initialising the above mentioned // complete binary tree for (let i = 1; i <= 5; i++) { // Adding edge to a binary tree addEdge(i, 2 * i); addEdge(i, 2 * i + 1); } // Calling modified bfs function bfs(1); display();// This code is contributed by unknown2108</script> |
Output:
1 3 7 11 10 9 8 4 5 6 2
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




